• Title/Summary/Keyword: Mutual Coupling

Search Result 193, Processing Time 0.025 seconds

Alternative Expressions for Mutual Inductance and Coupling Coefficient Applied in Wireless Power Transfer

  • Kim, Gunyoung;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.112-118
    • /
    • 2016
  • Alternative analytic expressions for the mutual inductance ($L_m$) and coupling coefficient (k) between circular loops are presented using more familiar and convenient expressions that represent the property of reciprocity clearly. In particular, the coupling coefficients are expressed in terms of structural dimensions normalized to a geometric mean of radii of two loops. Based on the presented expressions, various aspects of the mutual inductances and coupling coefficients, including the regions of positive, zero, and negative value, are examined with respect to their impacts on the efficiency of wireless power transmission.

An Improvement of Closed-Form Formula for Mutual Impedance Computation

  • Son, Trinh-Van;Hwang, Keum Cheol;Park, Joon-Young;Kim, Seon-Joo;Shin, Jae-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.240-244
    • /
    • 2013
  • In this paper, we present an improvement of a closed-form formula for mutual impedance computation. Depending on the center-to-center spacing between two rectangular microstrip patch antennas, the mutual impedance formula is separated into two parts. The formula based on synthetic asymptote and variable separation is utilized for spacings of more than 0.5 ${\lambda}_0$. When the spacing is less than 0.5 ${\lambda}_0$, an approximate formula is proposed to improve the computation for closely spaced elements. Simulation results are compared to computational results of mutual impedances and mutual coupling coefficients as functions of normalized center-to-center spacing in both E- and H-plane coupling configurations. A good agreement between simulation and computation is achieved.

Effect of a Finite Substrate on the Mutual Coupling of a Pair of Microstrip Patch Antennas Positioned along the E-plane (유한한 기판 크기가 E-평면상에 배열된 두 개의 패치안테나간의 상호결합에 미치는 영향)

  • Kim, Tae-Young;Kim, Gun-Su;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.6
    • /
    • pp.26-34
    • /
    • 2010
  • The mutual coupling of a pair of microstrip patch antennas on a finite grounded dielectric substrate is influenced by the diffracted field of surface waves from the edges of a substrate. The effective dielectric constant of a grounded dielectric substrate determines the distance between the antenna center and the edge of a substrate to obtain the minimum mutual coupling between a pair of microstrip patch antennas. The optimum substrate size with the minimum mutual coupling is easily calculated using the image method. The optimum substrate sizes using the linage method are in good agreement with the results obtained by the full wave simulation.

Signal Estimation Using Covariance Matrix of Mutual Coupling and Mean Square Error

  • Lee, Kwan-Hyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.691-696
    • /
    • 2018
  • We propose an algorithm to update weight to use the mean square error method and mutual coupling matrix in a coherent channel. The algorithm proposed in this paper estimates the desired signal by using the updated weight. The updated weight is obtained by covariance matrix using mean square error and mutual coupling matrix. The MUSIC algorithm, which is direction of arrival estimation method, is mostly used in the desired signal estimation. The MUSIC algorithm has a good resolution because it uses subspace techniques. The proposed method estimates the desired signal by updating the weights using the mutual coupling matrix and mean square error method. Through simulation, we analyze the performance by comparing the classical MUSIC and the proposed algorithm in a coherent channel. In this case of the coherent channel for estimating at the three targets (-10o, 0o, 10o), the proposed algorithm estimates all the three targets (-10o, 0o, 10o). But the classical MUSIC algorithm estimates only one target (x, x, 10o). The simulation results indicate that the proposed method is superior to the classical MUSIC algorithm for desired signal estimation.

Analysis of Mutual Coupling between Antennas on Small UAV (소형 무인항공기에 이용되는 안테나간의 상호결합 해석)

  • 김현경;김태식;이해창
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.407-415
    • /
    • 2002
  • In this paper, mutual coupling effect between antennas mounted on UAV(Unmanned Air Vehicle), operating In different frequency bands, is calculated for supposing efficient arrangement. For the calculation, FDTD method is used, simulation parameters are confined to distance between antennas, height of antennas, types of ground, etc. The simulation data are compared with those of other numerical method to confirm accuracy of the results. It is appeared that the critical factor of mutual coupling is height of an antenna relative to that of the other antenna.

An Improvement of Digital Distance Relay Reliability considering Mutual Coupling in Transmission Lines (송전선로에 있어서 Mutual Coupling을 고려한 디지털 거리계전기의 신뢰도 향상)

  • Choi, Seok-Min;Lee, Jae-Gyu;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1025-1027
    • /
    • 1997
  • In this paper, the digital distance relay of transmission lines under fault conditions is discussed. Distance relay is used to protect transmission lines. The principle of distance relay is well-known ; the impedance measured by a relay is Proportional to the distance from the relay to the fault. Hence, by measuring the impedance, it can be determined whether the line is faulted or not. Unfortunately, the measurement of the fault distance is distorted by Mutual Coupling. To implement more reliable and practical digital distance relay, the mutual coupling effect has to be considered.

  • PDF

A Study on Performance Improvement to Use Dummy Elements on A Monopole Array-assisted Doppler Spread Compensator for A Digital Terrestrial Television Broadcasting Receiver

  • Yu, Young-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.426-437
    • /
    • 2012
  • This paper proposes an array antenna assisted Doppler spread compensator with dummy elements which are placed on either end of a monopole array for a digital terrestrial television broadcasting (DTTB) receiver. An array antenna assisted Doppler spread compensator, proposed previously, has a major drawback in performance degradation owing to mutual coupling effect among array elements. In order to solve the mutual coupling problem, dummy elements, placed on both sides of the monopole array mitigate performance degradation of a Doppler spread compensator arising from the mutual coupling among monopole array elements. Computer simulation results show that the dummy elements can reduce this performance degradation as well as expand the operating bandwidth of a Doppler spread compensator.

Analysis of the Rectangular Microstrip Antenna with Parasitic Elements Considering the Mutual Coupling Characteristics (상호결합 특성이 고려된 기생소자를 갖는 구형 마이크로스트립 안테나 해석)

  • Son, Geon-Ho;Yun, Li-Ho;Hong, Jae-Pyo;Cho, Young-Ki;Son, Hyon
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.12
    • /
    • pp.12-17
    • /
    • 1991
  • In this paper, E-plane gap-coupled rectangular microstrip antennas with parasitic elements are analyzed. The mutual coupling between the radiating edges is represented as the voltage-dependent current source. The gap coupling between the patch and parasitic element is characterized with the REC(Radiating Edges-Coupling) model, and the conventional transmission line model is used to obtain the equivalent circuit of the antenna. The return loss of the rectangular microstrip antennas with short-and open-circuit parasitic elements are calculated and compared with the measured values. The theoretical values including the mutual coupling are more in agreement with the measured values than the calculated values without the mutual coupling.

  • PDF

A Design for Mutual Coupling Suppression between Elements in Planar Array Antenna (평면 배열 안테나의 소자간 상호 결합 억압 설계)

  • Min Kyeong-Sik;Kim Dong-Jin;Park Chul-Keun;Moon Young-Min;Kim Young-Eil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.803-809
    • /
    • 2005
  • This paper presents a novel method of mutual coupling suppression between antenna elements for performance improvement in planar array antenna system. Two miniature patch antenna elements satisfied IEEE 802.1 la($5.75\~5.35\;GHz,\;5.75\~5.85\;GHz$) are used for this research, they are arrayed by half wave length interval. It is observed about -20 dB mutual coupling between each antenna element at center frequency. To suppress mutual coupling, the arrayed antennas with a reversed 'U' structure are observed below -30 dB mutual coupling at IEEE 802.1la band.

Design of Neuro-Fuzzy Controller using Relative Gain Matrix (상대이득행렬을 이용한 뉴로 퍼지 제어기의 설계)

  • 서삼준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.157-157
    • /
    • 2000
  • In the fuzzy control for the multi-variable system, it is difficult to obtain the fuzzy rule. Therefore, the parallel structure of the independent single input-single output fuzzy controller using a pairing between the input and output variable is applied to the multi-variable system. The concept of relative gain matrix is used to obtain the input-output pairs. However, among the input/output variables which are not paired the interactive effects should be taken into account. these mutual coupling of variables affect the control performance. Therefore, for the control system with a strong coupling property, the control performance is sometimes lowered. In this paper, the effect of mutual coupling of variables is considered by tile introduction of a simple compensator. This compensator adjusts the degree of coupling between variables using a neural network. In this proposed neuro-fuzzy controller, the Neural network which is realized by back-propagation algorithm, adjusts the mutual coupling weight between variables.

  • PDF