• Title/Summary/Keyword: Mutants

Search Result 1,505, Processing Time 0.026 seconds

Regulation of Vacuolar $H^+-ATPase$ c Gene Expression by Oxidative Stress

  • Kwak, Whan-Jong;Kim, Seong-Mook;Kim, Min-Sung;Kang, Jung-Hoon;Kim, Dong-Jin;Kim, Ho-Shik;Kown, Oh-Joo;Kim, In-Kyung;Jeong, Seong-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.275-282
    • /
    • 2005
  • By using differential display, we identified one of the genes encoding the multi-subunit complex protein V-ATPase, c subunit gene (ATP6L), and showed alterations of the gene expression by oxidative stresses. Expression of the ATP6L gene in Neuro-2A cells was increased by the treatment with $H_2O_2$ and incubation in hypoxic chamber, implying that the expression of the ATP6L gene is regulated by oxidative stresses. To examine mechanisms involved in the regulation of the gene expression by oxidative stresses, the transcriptional activity of the rat ATP6L promoter was studied. Transcription initiation site was determined by primer extension analysis and DNA sequencing, and promoter of the rat ATP6L and its deletion clones were constructed in reporter assay vector. Significant changes of the promoter activities in Neuro-2A cells were observed in two regions within the proximal 1 kbp promoter, and one containing a suppressor was in -195 to -220, which contains GC box that is activated by binding of Sp1 protein. The suppression of promoter activity was lost in mutants of the GC box. We confirmed by electrophoretic mobility shift and supershift assays that Sp1 protein specifically binds to the GC box. The promoter activity was not changed by the $H_2O_2$ treatment and incubation in hypoxic chamber, however, $H_2O_2$ increased the stability of ATP6L mRNA. These data suggest that the expression of the ATP6L gene by oxidative stresses is regulated at posttranscriptional level, whereas the GC box is important in basal activities of the promoter.

Expression of \beta-agarase Gene and Carabolite Repression in Escherichia coli by the Promoter of Alginate Lyase Gene Isolated from Marine Pseudomonas sp. (해양의 Pseudomonas sp. 로부터 분리한 alginate lyase 유전자의 promoter에 의한 대장균 내에서의 \beta-agarase 유전자의 발현과 catabolite repression의 변화)

  • 공인수;박제현;한정현;최윤혁;이종희;진철호;이정기
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.72-77
    • /
    • 2001
  • Expression of f3 ~agarase Gene and Catabolite Repression in Escherichia coli by the Promoter of Alginate Lyase Gene Isolated from Marine Pseudomonas sp. Jin, Cheal~Ho, J~Hyeon Park, Jeong-Hyun Han, YoonM Hyeok Chae, Jong~Hee Lee, Jung-Kee Lee!, and In-800 Kong*. Faculty of Food Science and Biotechnology, Pukyong National UniversitYt Pusan 608-737, Korea, llnBioNet Co. 1690-3 Taejon 306-230, Korea - Promoter is a key factor for expression of the recombinant protein. There are many promoters for overexpression of protein in various organisms. The aly promoter of Pseudomonas sp. W7 isolated from marine environment was known to be a constitutive expression promoter of the alginate lyase gene, and it's promoter activity is repressed by glucose in Escherichia coli. To investigate the catabolite repression of the aly promoter ~md association between the promoter mutants, f3 agarase gene, which was also cloned from Pseudomonas sp. W7 was connected to the aly promoter with the sequence the coding 46 N-terminal amino acids ofthe alginate lyase gene. The constructed plasmid was introduced into E. coli and the agarase activity was measured. Fourty six amino acids of the alginate lyase gene was serially deleted using peR to the direction of 5' upstream region and subcloned. The agarase was overexpressed by the aly promoter and the production of agarase was repressed by the addition of glucose into culture media. Fourty six amino acids of alginate lyase did not affect the production of agarase at all. The deletion of a putative stem-loop structure in the aly promoter induced the decrease of f3 -agarase productivity.

  • PDF

High Throughput Screening and Directed Evolution of Tyrosine Phenol-Lyase (Tyrosine Phenol-Lyase의 고속탐색기술 개발 및 방향성 분자진화)

  • Choi Su-Lim;Rha Eu-Gene;Kim Do-Young;Song Jae-Jun;Hong Seung-Pyo;Sung Moon-Hee;Lee Seung-Goo
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.58-62
    • /
    • 2006
  • Rapid assay of enzyme is a primary requirement for successful application of directed evolution technology. Halo generation on a turbid plate would be a method of choice for high throughput screening of enzymes in this context. Here we report a new approach to prepare turbid plates, by controlling the crystallization of tyrosine to form needle-like particles. In the presence of tyrosine phenol-lyase (TPL), the needle-like tyrosine crystals were converted to soluble phenol rapidly than the usual rectangular tyrosine crystals. When an error-prone PCR library of Citrobacter freundii TPL was spread on the turbid plate, approximately 10% of the colonies displayed recognizable halos after 24 hours of incubation at $37^{\circ}C$. Representative positives from the turbid plates were transferred to LB-medium in 96-wellplates, cultivated overnight, and assayed for the enzyme activity with L-tyrosine as the substrate. The assay results were approximated to be proportional to the halo size on turbid plates, suggesting the screening system is directly applicable to the directed evolution of TPL. Actually, two best mutants on the turbid plates were identified to be $2{\sim}2.5$ and 1.5-fold improved in the activity.

Selection of Yeast Mutant Strain with High RNA Content and Its High Cell-Density Fed-Batch Culture. (고함량 RNA 효모 변이주의 선별 및 고농도세포 유가배양)

  • 김재범;권미정;남희섭;김재훈;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.68-72
    • /
    • 2002
  • To obtain a yeast mutant with high RNA content and high growth rate, Saccharomyces cerevisiae MTY62 was mutated with ethylmethane sulfonate. Among the selected mutants that were sensitive to the high concentration of KCl, M40-10 strain was finally selected due to its rapid cell growth and high RNA content in the tube and baffled-flask cultures. In the batch culture of M40-10 mutant, the maximum specific growth rate ($\mu_{max}$) of $0.38 h^{-1}$ , RNA concentration of 3210 mg-RNA/1, and RNA content of 183 mg-RNA/g-DCW were obtained, which were 23%, 15%, and 12% increased levels, respectively, compared to those of MTY62 parent strain. The intermittent fed-batch culture of M40-10 strain resulted in the maximum cell concentration of 35.6 g-DCW/1, RNA concentration of 5677 mg/1, and RNA content of 160 mg-RNA/g-DCW. Through the constant fed-batch culture, the maximum cell concentration of 46.4 g-DCW/1, RNA concentration of 6270 mg-RNA/1, and RNA content of 135 mg-RNA/g-DCW were obtained. At the 20 h culture time in the fed-batch cultures of M40-10 strain, the cell and RNA concentrations were increased by 30% and 10%, respectively, over the parent strain MTY62. In addition, it was also found that the accumulated RNA within the mutant cell was not degraded until the end of fed-batch cultivation, indicating that the M40-10 cell is a mutant with weak acidic RNase activity.y.

Biological Activity of Recombinant Human Erythropoietin (EPO) In Vivo and In Vitro

  • Park Jong-Ju;Lee Hyen-Gi;Nam In-Suk;Park Hee-Ja;Kim Min-Su;Chung Yun-Hi;Naidansuren Purevjargal;Kang Hye-Young;Lee Poong-Yun;Park Jin-Gi;Seong Hwan-Hoo;Chang Won-Kyong;Kang Myung-Hwa
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.69-73
    • /
    • 2005
  • The hematopoietic growth factor erythropoietin (EPO) is required for the maintenance, proliferation, and differentiation of the stem cells that produce erythrocytes. To analyse the biological activity of the recombinant human EPO (rec-hEPO), we have cloned the EPO cDNA and genomic DNA and produced rec-hEPO in the CHO cell lines. The growth and differentiation of EPO-dependent human leukemic cell line (F36E) were used to measure cytokine dependency and in vitro bioactivity of rec-hEPO. MIT assay values were increased by survival of F36E cells at 24h or 72h. The hematocrit and RBC values were increased by subcutaneous injection of 20 IU (in mice) and 100IU(in rats) rec-hEPO. Hematocrit values remarkably increased at $13.2\%$ (in mice) and $12.2\%$ (in rats). The pharmacokinetic behavior with injection of 6 IU of rec-hEPO remained detectable after 24 h in all mice tested. The highest peat appeared at 2h after injection. The long half-life of rec-hEPO is likely to confer clinical advantages by allowing less frequent dosing in patients treated for anemia. These data demonstratethat ree-hEPO produced in this study has a potent activity in vivo and in vitro. The results also suggest that biological activity of ree-hEPO could be remarkably enhanced by genetic engineering that affects the potential activity, including mutants with added oligosaccharide chain and designed to produce EPO-EPO fusion protein.

$\beta$-Subunit 94~96 Residues of Tethered Recombinant Equine Chorionic Gonadotropin are Important Sites for Luteinizing Hormone and Follicle Stimulating Hormone like Activities

  • Park, Jong-Ju;JarGal, Naidansuren;Yoon, Jong-Taek;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.34 no.1
    • /
    • pp.33-40
    • /
    • 2010
  • Equine chorionic gonadotropin (eCG) is a heavily glycosylated glycoprotein composed of non-covalently linked $\alpha$- and $\beta$-subunits. To study the function and signal transduction of tethered recombinant-eCG (rec-eCG), a single chain eCG molecule was constructed, and the rec-eCG protein was prepared. In this study, we constructed 5 mutants (${\Delta}1$, ${\Delta}2$, ${\Delta}3$, ${\Delta}4$, and ${\Delta}5$) of rec-eCG using data about known glycoprotein hormones to analyze the role of specific follicle stimulating homone (FSH)-like activity. Three amino acids of certain specific sites were replaced with alanine. The expression vectors were transfected into CHO cells and subjected to G418 selection for 2~3 weeks. The media were collected and the quantity of secreted tethered rec-eCGs was quantified by ELISA. The LH- and FSH-like activities were assayed in terms of cAMP production by rat LH/CG and rat FSH receptors. Then, the metabolic clearance rate analyzed by the injection of rec-eCG (5 IU) into the tail vein was analyzed. The mutant eCGs (${\Delta}l$, ${\Delta}4$, and ${\Delta}5$) were transcripted, but not translated into proteins. Rec-eCG A2 was secreted in much lower amounts than the wild type. Only the rec-eCG ${\Delta}3$ ($\beta$-subunit: $Gln^{94}-Ile^{95}-Lys^{96}{\rightarrow}Ala^{94}-Ala^{95}-Ala^{96}$) was efficiently secreted. Although activity is low, its LH-like activity was similar to that of tethered $eCG{\beta\alpha}$. However, the FSH-like activity of rec-$eCG{\beta\alpha\Delta}3$ was completely flat. The result of the analysis of the metabolic clearance rate shoed the persistence of the mutant in the blood until 4 hours after the injection. After then, it almost disappeared at 8 hours. Taken together, these data suggest that 94~96 amino acid sequences in eCG $\beta$-subunit appear to be of utmost importance for signal transduction of the FSH receptor.

Development of Ethanol Producing Saccharomyces cerevisiae Strain Using High Concentration Galactose (고농도 Galactose로부터 에탄올을 생산하는 Saccharomyces cerevisiae 균주의 육성)

  • Kim, Ju-Hye;Yoon, Min-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.41-46
    • /
    • 2011
  • A galactose-fermenting yeasts, Saccharomyces cerevisiae No. 9, was selected by screening their abilities to produce carbon dioxide gas when grown on galactose. The selected strain, No. 9 and the reference strains NRRL Y-1528 which was exceptionally resistant to high concentration of substrate, were acclimated on sugars such as glucose, mannose, and galactose, and then their ethanol productivities were investigated during fermentation on these three carbon sources. Ethanol productivity of the strain No. 9 reached to the maximum levels after 18 h of fermentation and the ethanol yield was from 36 to 38% when presented as $[EtOH]_{max}/[Sugar]_{ini}(g/g)$, regardless of the conditions of acclimation. From the results obtained by acclimation and fermentation, it was concluded that the ethanol yields from galactose were not affected by the sugars acclimated. Improvements of the strain S. cerevisiae No. 9 were attempted to increase the fermentation efficiency and/or ethanol yields on high concentration of substrate by the conventional mutation methods employing methanesulfonic acid, ethyl ester (EMS). Mutants, Mut-5 (SJ1-40), -17 (LK4-25) and -24 (LK2-48) fermented galactose at the concentration of 20% in the levels of higher 39.9~51.6% than the mother strain, No. 9, however, their ethanol yields never exceeded those of the reference strain.

Enhancement of Astaxanthin Production of Haematococcus pluvialis by Mutation (돌연변이를 통한 미세조류 Haematococcus pluvialis의 Astaxanthin 생산성의 향상)

  • Park Bok-Jun;Kim Beob-Min;Shim Su-Hyun;Kim Jeong-Dong;Lee Choul-Gyun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.136-142
    • /
    • 2006
  • Haematococcus pluvialis is a great producer of astaxanthin (3,3'-dihydroxy-$\beta$,$\beta$-carotene-4,4'-dione). The activities of astaxanthin include potential cancer prevention, immune response enhancement, antioxidant activity, and so on. Nevertheless, it tried to manipulate by mutation for overcoming low growth rate of wild type and limited production of astaxanthin. Mutated colony that is lager and more reddish one than wild type was selected by attempting to expose strains to UV irradiation and to treat chemical such as EMS and colchicines as mutagen. Selected mutants were further screened using inhibitors of the carotenoid biosynthetic pathway. Inhibitors used were nicotine and diphenylamine and both had decreased the survival rate by 40-50%. Among over 50,000 mutant colonies screened, two strains were selected. One selected mutant strain (U15-5) from UV treatment showed 1.68-fold higher total carotenoid contents per cell than that of the wild type strain. On the other hand, the other selected mutant strains (DS, M4-3) from colchicine treatment showed 20$\sim$30% faster cell growth than the wild type strain.

DnaJ of Streptococcus suis Type 2 Contributes to Cell Adhesion and Thermotolerance

  • Zhang, Xiaoyan;Jiang, Xiaowu;Yang, Ling;Fang, Lihua;Shen, Hongxia;Lu, Xingmeng;Fang, Weihuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.771-781
    • /
    • 2015
  • To examine if the molecular chaperone DnaK operon proteins of Streptococcus suis type 2 (SS2) are involved in adhesion to host cells, the abundance values of these proteins from the surface of two SS2 strains of different adhesion capability were compared. Their roles in growth and adhesion to human laryngeal epithelial cell line HEp-2 cells were investigated on SS2 strain HA9801 and its mutants with DnaK operon genes partially knocked-out (PKO mutant) under heat stress. The major difference was that DnaJ was more abundant in strain HA9801 than in strain JX0811. Pretreatment of the bacteria with hyperimmune sera to DnaJ, but not with those to other proteins, could significantly reduce SS2 adhesion to HEp-2 cells. PKO of dnaJ g ene resulted in decreased SS2 growth at 37℃ and 42℃, and reduced its adhesion to HEp-2 cells. The wild-type strain stressed at 42℃ had increased expression of DnaJ on its surface and elevated adhesion to HEp-2 cells, which was also inhibitable by DnaJ specific antiserum. These results indicate that the DnaJ of S. suis type 2 is important not only for thermotolerance but also for adhesion to host cells. Because DnaJ expression is increased upon temperature upshift with increased exposure on the bacterial surface, the febrile conditions of the cases with systemic infections might help facilitate bacterial adhesion to host cells. DnaJ could be one of the potential candidates as a subunit vaccine because of its good immunogenicity.

The Site-Directed A184S Mutation in the HTH Domain of the Global Regulator IrrE Enhances Deinococcus radiodurans R1 Tolerance to UV Radiation and MMC Shock

  • Zhang, Chen;Zhou, Zhengfu;Zhang, Wei;Chen, Zhen;Song, Yuan;Lu, Wei;Lin, Min;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2125-2134
    • /
    • 2015
  • IrrE is a highly conserved global regulator in the Deinococcus genus and contributes to survival from high doses of UV radiation, ionizing radiation, and desiccation. Drad-IrrE and Dgob-IrrE from Deinococcus radiodurans and Deinococcus gobiensis I-0 each share 66% sequence identity. However, Dgob-IrrE showed a stronger protection phenotype against UV radiation than Drad-IrrE in the D. radiodurans irrE-deletion mutant (ΔirrE), which may be due to amino acid residues differences around the DNA-binding HTH domain. Site-directed mutagenesis was used to generate a Drad-IrrE A184S single mutant, which has been characterized and compared with the ΔirrE mutant complemented strain with Drad-irrE, designated ΔirrE-E. The effects of the A184S mutation following UV radiation and mitomycin C (MMC) shock were determined. The A184S mutant displayed significantly increased resistance to UV radiation and MMC shock. The corresponding A184 site in Dgob-IrrE was inversely mutated, generating the S131A mutant, which exhibited a loss of resistance against UV radiation, MMC shock, and desiccation. qPCR analysis revealed that critical genes in the DNA repair system, such as recA, pprA, uvrA, and ddrB, were remarkably induced after UV radiation and MMC shock in the ΔirrE-IE and A184S mutants. These data suggested that A184S improves the ability against UV radiation and MMC shock, providing new insights into the modification of IrrE. We speculated that the serine residue may determine the efficiency of DNA binding, leading to the increased expression of IrrE-dependent genes important for protection against DNA damage.