Browse > Article

Enhancement of Astaxanthin Production of Haematococcus pluvialis by Mutation  

Park Bok-Jun (Institute of Industrial Biotechnology, Department of Biological Engineering Inha University)
Kim Beob-Min (Institute of Industrial Biotechnology, Department of Biological Engineering Inha University)
Shim Su-Hyun (Institute of Industrial Biotechnology, Department of Biological Engineering Inha University)
Kim Jeong-Dong (Institute of Industrial Biotechnology, Department of Biological Engineering Inha University)
Lee Choul-Gyun (Institute of Industrial Biotechnology, Department of Biological Engineering Inha University)
Publication Information
Microbiology and Biotechnology Letters / v.34, no.2, 2006 , pp. 136-142 More about this Journal
Abstract
Haematococcus pluvialis is a great producer of astaxanthin (3,3'-dihydroxy-$\beta$,$\beta$-carotene-4,4'-dione). The activities of astaxanthin include potential cancer prevention, immune response enhancement, antioxidant activity, and so on. Nevertheless, it tried to manipulate by mutation for overcoming low growth rate of wild type and limited production of astaxanthin. Mutated colony that is lager and more reddish one than wild type was selected by attempting to expose strains to UV irradiation and to treat chemical such as EMS and colchicines as mutagen. Selected mutants were further screened using inhibitors of the carotenoid biosynthetic pathway. Inhibitors used were nicotine and diphenylamine and both had decreased the survival rate by 40-50%. Among over 50,000 mutant colonies screened, two strains were selected. One selected mutant strain (U15-5) from UV treatment showed 1.68-fold higher total carotenoid contents per cell than that of the wild type strain. On the other hand, the other selected mutant strains (DS, M4-3) from colchicine treatment showed 20$\sim$30% faster cell growth than the wild type strain.
Keywords
Haemacoccus pluvialis; mutation; astaxanthin productivity;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 Borowitzka, M. A. 1997. Microalgae for aquaculture: Opportunities and constraints. J. Appl. Phycol. 9:393-401   DOI
2 Chumpolkulwong, N., T. Kakizono, H. Ishii, and N. Nishio. 1997. Enzymatic conversion of beta-carotene to astaxanthin by cell-extracts of a green alga Haematococcus pluvialis. Biotechnol. Lett. 19: 443-446   DOI
3 Park, E. K. and C. G. Lee. 2001. Astaxanthin production by Haematococcus pluvialis under various light intensities and wavelengths. J. Microbiol. Biotech. 11: 1024-1030
4 Chumpolkulwong, N., T. Kakizono, T. Handa, and N. Nishio. 1997. Isolation and characterization of compactin resistant mutants of an astaxanthin synthesizing green alga Haematococcus pluvialis. Biotechnol. Lett. 19: 299-302   DOI   ScienceOn
5 Chumpolkulwong, N., T. Kakizono, S. Nagai, and N. Nishio. 1997. Increased astaxanthin production by Phaffza rhodozyma mutants isolated as resistant to diphenylamine. J. Ferment. Bioeng. 83: 429-434   DOI   ScienceOn
6 Margalith, P. Z. 1999. Production of ketocarotenoids by microalgae. Appli. Microbiol. Biotechnol. 51: 431-438   DOI
7 Herrera, J. C., L. G. Moreno, J. R. Acuna, M. De Pena, and D. Osorio. 2002. Colchicine-induced microspore embryogenesis in coffee. Plant Cell Tiss. Org. 71: 89-92   DOI   ScienceOn
8 Tripathi, U., G. Venkateshwaran, R. Sarada, and G. A. Ravishankar. 2001. Studies on Haematococcus pluvialis for improved production of astaxanthin by mutagenesis. World J. Microb. Biotechnol. 17: 143-148   DOI
9 Harker, M., A. J. Tsavalos, and A. J. Young. 1996. Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresour. Technol. 55: 207-214   DOI   ScienceOn
10 Wang., A. S., D. S. K. Chang., J. B. Milcic., and T. C. Yang. 1988. Effect of X-ray irradiation on maize inbred line B73 tissue cultures and regenerated plants. Crop. Sci. 28: 358-362
11 Lee, Y. K. 2001. Microalgal mass culture systems and methods: Their limitation and potential. J. Appl. Phycol. 13: 307-315   DOI   ScienceOn
12 Ishikawa, T., T. Takayama, and H. Ishizaka. 1999. Amphidiploids between Alstroemeria ligtu L. hybrid and A. pelegrina L, var. rosea induced through colchicine treatment and their reproductive characteristics. Sci. Hortic. 80: 235-246   DOI   ScienceOn
13 Hasegawa., H., S. Takashima., and A. Nakamura. 1995. Effect of gamma-ray irradiation on cultured anther of tobacco (Nicotiana tobacum L.). Radioactivity and morphological variants appearing in the haplod plants. Plant Tiss. Cult. Lett. 12: 281-287
14 Borowitzka., M. A. and L. J. Borowitzka. 1988. Micro-algal biotechnology. Cambridge, UK: Cambridge University Press
15 Hong, S. P., M. H. Kim., and J. K. Hwang. 1998. Biological functions and production technology of carotenoids. J. Korean Soc. Food Sci. Nutr. 27: 1297-1306   과학기술학회마을
16 Palozza, P. and N. I. Krinsky. 1992. Antioxidant effects of carotenoids invivo and invitro - an overview. Methods Enzymol. 213: 403-420   DOI
17 Becker, E. W. 1994. Biomechanical model of the P-type ion pumps of the cell. Naturwissenschaflen 81: 21-27   DOI
18 Borowitzka, M. A. 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70: 313-321   DOI   ScienceOn
19 Kobayashi, M. 2003. Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotechnol. Bioprocess Eng. 8: 322-330.   DOI   ScienceOn
20 Bamabas, B., B. Obert, and G. Kovacs. 1999. Colchicine, an efficient genome-doubling agent for maize (Zea mays L.) microspores cultured in anthero. Plant Cell Rep. 18: 858-862   DOI
21 Zhang, D. H. and Y. K. Lee. 1997. Enhanced accumulation of secondary carotenoids in a mutant of the green alga, Chlorococcum sp. J. Appl. Phycol. 9: 459-463   DOI