• Title/Summary/Keyword: Mutant Generation

Search Result 102, Processing Time 0.023 seconds

Characterization of RbmD (Glycosyltransferase in Ribostamycin Gene Cluster) through Neomycin Production Reconstituted from the Engineered Streptomyces fradiae BS1

  • Nepal, Keshav Kumar;Oh, Tae-Jin;Subba, Bimala;Yoo, Jin Cheol;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.83-88
    • /
    • 2009
  • Amino acid homology analysis predicted that rbmD, a putative glycosyltransferase from Streptomyces ribosidificus ATCC 21294, has the highest homology with neoD in neomycin biosynthesis. S. fradiae BS1, in which the production of neomycin was abolished, was generated by disruption of the neoD gene in the neomycin producer S. fradiae. The restoration of neomycin by self complementation suggested that there was no polar effect in the mutant. In addition, S. fradiae BS6 was created with complementation by rbmD in S. fradiae BS1, and secondary metabolite analysis by ESI/MS, LC/MS and MS/MS showed the restoration of neomycin production in S. fradiae BS6. These gene inactivation and complementation studies suggested that, like neoD, rbmD functions as a 2-N-acetlyglucosaminyltransferase and demonstrated the potential for the generation of novel aminoglycoside antibiotics using glycosyltransferases in vivo.

Systematic Development of Tomato BioResources in Japan

  • Ariizumi, Tohru;Aoki, Koh;Ezura, Hiroshi
    • Interdisciplinary Bio Central
    • /
    • v.3 no.1
    • /
    • pp.1.1-1.6
    • /
    • 2011
  • Recently, with the progress of genome sequencing, materials and information for research on tomato (Solanum lycopersicum) have been systematically organized. Tomato genomics tools including mutant collections, genome sequence information, full-length cDNA and metabolomic datasets have become available to the research community. In Japan, the National BioResource Project Tomato (NBRP Tomato) was launched in 2007, with aims to collect, propagate, maintain and distribute tomato bioresources to promote functional genomics studies in tomato. To this end, the dwarf variety Micro-Tom was chosen as a core genetic background, due to its many advantages as a model organism. In this project, a total of 12,000 mutagenized lines, consisting of 6000 EMS-mutagenized and 6000 gamma-ray irradiated M2 seeds, were produced, and the M3 offspring seeds derived from 2236 EMS-mutagenized M2 lines and 2700 gamma-ray irradiated M2 lines have been produced. Micro-Tom mutagenized lines in the M3 generation and monogenic Micro-Tom mutants are provided from NBRP tomato. Moreover, tomato cultivated varieties and its wild relatives, both of these are widely used for experimental study, are available. In addition to these bioresources, NBRP Tomato also provides 13,227 clones of full-length cDNA which represent individual transcripts non-redundantly. In this paper, we report the current status of NBRP Tomato and its future prospects.

Induced Mutant Animal Models for Studying the Genetics of Hypertension and Atherosclerosis

  • Oh, Goo-Taeg
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.289-292
    • /
    • 2001
  • Gene targeting allows precise, predetermined changes to be made in a chosen gene in the mouse genome. To date, targeting has been used most often for generation of animals completely lacking the product of a gene of interest. Models of essential hypertension have been produced by mutated genes relating renin angiotensin system. The most significant contribution to understanding the genetic etiology of essential hypertension is probably the demonstration that discrete alterations in the expression of a variety of different genes can individually cause changes in the blood pressures of mice, even when the mice have all their compensatory mechanisms intact. These effects are readily detected in animals having moderate decreases in gene function due to heterozygosity for gene disruptions or modest increases due to gene duplication. As a species the mouse is highly resistant to atherosclerosis. However. through induced mutations it has been possible to develop lines oj mice that are deficient in apolipoprotein E, a ligand important in lipoprotein clearance, develop atherosclerotic lesions resembling those observed in humans. The atherosclerotic lesions in apoE-deficient mice have been well characterized, and they resemble human lesions in their sites of predilection and progression to the fibroproliferative stage. Other promising models are mice that are deficient in the low-density lipoprotein receptor. Considerable work still remains to be done in dissecting out in a rigorous manner the effects of alterations in single genes on the induction or progression of atherosclerosis and on the control of blood pressures. Perhaps even more exciting is the opportunity now becoming available to breed animals in which the effects oj precise differences in more than one gene can be studied in combination.

  • PDF

Selection and Agronomics Characterization of Radiation-Induced Variants in Rice (방사선 처리에 의해 유도된 돌연변이 벼의 주요 특징)

  • Lee, In-Sok;Kim, Dong-Sup;Choi, Su-Ryun;Song, Hi-Sup;Lee, Sang-Jae;Lim, Yong-Pyo;Lee, Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.227-232
    • /
    • 2003
  • Radiation technique has been used to develope mutant rice. Suwon 345 rice seeds were irradiated with 250 Gy gamma ray. Morphological characteristics of the variants in M$_{8}$ generation were observed and random amplified polymorphic DNA(RAPD) analysis was carried out. Plant height, panicle length, 1,000 grain weight and lodging were very different in mutants compared with donor cultivar. RAPD analysis showed that polymorphic bands were presented in several primers of the mutants. In comparison with original variety, variants were classified into four group through UPGMA analysis. A group has mutation trait in panicle length, B group in plant height and C group in 1,000 grain weight. Among mutants, no. 46 and 147 was ranked as salt tolerance and the malonaldehyde content of these mutants was more increased than that of original variety. Valuable mutants obtained will be useful for developing new cultivars and for studing gene function in molecular level.l.

Defect of SIRT1-FoxO3a axis is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated cellular senescence and nematode aging

  • Ham, Hye-Jun;Park, Jeong-Woo;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.52 no.4
    • /
    • pp.265-270
    • /
    • 2019
  • We investigated whether SIRT1 is associated with reactive oxygen species (ROS) accumulation during CK2 downregulation-mediated senescence. SIRT1 overexpression suppressed ROS accumulation, reduced transcription of FoxO3a target genes, and nuclear export and acetylation of FoxO3a, which were induced by CK2 downregulation in HCT116 and MCF-7 cells. Conversely, overexpression of a dominant-negative mutant SIRT1 (H363Y) counteracted decreased ROS levels, increased transcriptional activity of FoxO3a, and increased nuclear import and decreased acetylation of FoxO3a, which were induced by CK2 upregulation. CK2 downregulation destabilized SIRT1 protein via an ubiquitin-proteasome pathway in human cells, whereas CK2 overexpression reduced ubiquitination of SIRT1. Finally, the SIRT1 activator resveratrol attenuated the accumulation of ROS and lipofuscin as well as lifespan shortening, and reduced expression of the DAF-16 target gene sod-3, which were induced by CK2 downregulation in nematodes. Altogether, this study demonstrates that inactivation of the SIRT1-FoxO3a axis, at least in part, is involved in ROS generation during CK2 downregulation-mediated cellular senescence and nematode aging.

Growth Factors Upregulated by Uric Acid Affect Guanine Deaminase-Induced Melanogenesis

  • Nan-Hyung Kim;Ai-Young Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • Uric acid produced by guanine deaminase (GDA) is involved in photoaging and hyperpigmentation. Reactive oxygen species (ROS) generated by uric acid plays a role in photoaging. However, the mechanism by which uric acid stimulates melanogenesis in GDA-overexpressing keratinocytes is unclear. Keratinocyte-derived paracrine factors have been identified as important mechanisms of ultraviolet-induced melanogenesis. Therefore, the role of paracrine melanogenic growth factors in GDA-induced hypermelanosis mediated by uric acid was examined. The relationships between ROS and these growth factors were examined. Primary cultured normal keratinocytes overexpressed with wild type or mutant GDA and those treated with xanthine or uric acid in the presence or absence of allopurinol, H2O2, or N-acetylcysteine (NAC) were used in this study. Intracellular and extracellular bFGF and SCF levels were increased in keratinocytes by wild type, but not by loss-of-function mutants of GDA overexpression. Culture supernatants from GDA-overexpressing keratinocytes stimulated melanogenesis, which was restored by anti-bFGF and anti-SCF antibodies. Allopurinol treatment reduced the expression levels of bFGF and SCF in both GDA-overexpressing and normal keratinocytes exposed to exogenous xanthine; the exogenous uric acid increased their expression levels. H2O2-stimulated tyrosinase expression and melanogenesis were restored by NAC pretreatment. However, H2O2 or NAC did not upregulate or downregulate bFGF or SCF, respectively. Overall, uric acid could be involved in melanogenesis induced by GDA overexpression in keratinocytes via bFGF and SCF upregulation not via ROS generation.

Identification of a Potential Gene for Elevation ω-3 Concentration and its Efficiency for Improving ω-6/ω-3 Ratio in Soybean

  • Hyun Jo;Jeong-Dong Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.24-24
    • /
    • 2022
  • This present study was to identify a novel candidate gene that contribute to the elevated α-linolenic acid (ALA, ω-3) concentration in PE2166 from mutagenesis of Pungsannamul. Major loci qALA5_1 and qALA5_2 were detected on chromosome 5 of soybean through quantitative trait loci mapping analyses of recombinant inbred lines. With next generation sequencing of parental lines and Pungsannamul, and recombinant analyses, a potential gene, Glyma. 05g221500 (HD) controlling elevated ALA concentration was identified. HD is a homeodomain-like transcriptional regulator that may regulate the expression level of microsomal ω-3 fatty acid desaturase (FAD3) genes responsible for the conversion of linoleic acid into ALA in the fatty acid biosynthetic pathway. In addition, we hypothesized that combination of mutant alleles, HD and either of microsomal delta-12 fatty acid desaturase 2-1 (FAD2-1\ could reduce the ω-6/ω-3 ratio. In populations where HD, and FAD2-1A and FAD2-1B genes were segregated, combination of a hd allele from PE2166 and either of the variant FAD2-1 alleles were sufficient to reduce the ω-6/ω-3 ratio in seeds.

  • PDF

Predictive Factors for Switched EGFR-TKI Retreatment in Patients with EGFR-Mutant Non-Small Cell Lung Cancer

  • Kwon, Byoung Soo;Park, Ji Hyun;Kim, Woo Sung;Song, Joon Seon;Choi, Chang-Min;Rho, Jin Kyung;Lee, Jae Cheol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.2
    • /
    • pp.187-193
    • /
    • 2017
  • Background: Third-generation tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR-TKIs) have proved efficacious in treating non-small cell lung cancer (NSCLC) patients with acquired resistance resulting from the T790M mutation. However, since almost 50% patients with the acquired resistance do not harbor the T790M mutation, retreatment with first- or second-generation EGFR-TKIs may be a more viable therapeutic option. Here, we identified positive response predictors to retreatment, in patients who switched to a different EGFR-TKI, following initial treatment failure. Methods: This study retrospectively reviewed the medical records of 42 NSCLC patients with EGFR mutations, whose cancers had progressed following initial treatment with gefitinib or erlotinib, and who had switched to a different first-generation EGFR-TKI during subsequent retreatment. To identify high response rate predictors in the changed EGFR-TKI retreatment, we analyzed the relationship between clinical and demographic parameters, and positive clinical outcomes, following retreatment with EGFR-TKI. Results: Overall, 30 (71.4%) patients received gefitinib and 12 (28.6%) patients received erlotinib as their first EGFR-TKI treatment. Following retreatment with a different EGFR-TKI, the overall response and disease control rates were 21.4% and 64.3%, respectively. There was no significant association between their overall responses. The median progression-free survival (PFS) after retreatment was 2.0 months. However, PFS was significantly longer in patients whose time to progression was ${\geq}10months$ following initial EGFR-TKI treatment, who had a mutation of exon 19, or whose treatment interval was <90 days. Conclusion: In patients with acquired resistance to initial EGFR-TKI therapy, switched EGFR-TKI retreatment may be a salvage therapy for individuals possessing positive retreatment response predictors.

Role of N-terminal Hydrophilic Amino Acids in Molecular Translocation of CTLA-4 to Cell Surface (CTLA-4 항원의 세포막 도달 기작에서 친수성 N말단 아미노산 잔기의 역할)

  • Han, Ji-Woong;Lee, Hye-Ja;Kim, Jin-Mi;Choi, Eun-Young;Chung, Hyun-Joo;Lim, Soo-Bin;Choi, Jang-Won;Chung, Yong-Hoon
    • IMMUNE NETWORK
    • /
    • v.2 no.2
    • /
    • pp.102-108
    • /
    • 2002
  • Background: This study was aimed to differentiate two forms of CTLA-4 (CD152) in activated peripheral blood lymphocyte and clarify the mechanism how cytoplasmic form of this molecule is targeted to cell surface. Methods: For this purpose we generated 2 different anti-human CD152 peptide antibodies and 5 different N'-terminal deletion mutant CTLA4Ig fusion proteins and carried out a series of Western blot and ELISA analyses. Antipeptide antibodies made in this study were anti-CTLA4pB and anti-CTLA4pN. The former recognized a region on extracellular single V-like domain and the latter recognized N'-terminal sequence of leader domain of human CD152. Results: In Western blot, the former antibody recognized recombinant human CTLA4Ig fusion protein as an antigen. And this recognition was completely blocked by preincubating antipeptide antibody with the peptide used for the antibody generation at the peptide concentration of 200 ug/ml. These antibodies were recognized human CD152 as a cytoplasmic sequestered- and a membrane bound- forms in phytohemagglutinin (PHA)-stimulated peripheral blood lymphocyte (PBL). These two forms of CD152 were further differentiated by using anti-CTLA4pN and anti-CTLA4pB antibodies such that former recognized cytosolic form only while latter recognized both cytoplasmic- and membraneforms of this molecule. Furthermore, in a transfection expression study of 5 different N'-terminal deletion mutant CTLA4Ig, mutated proteins were secreted out from transfected cell surface only when more than 6 amino acids from N'-terminal were deleted. Conclusion: Our results implies that cytosolic form of CTLA-4 has leader sequence while membrane form of this molecule does not. And also suggested is that at least N'-terminal 6 amino acid residues of human CTLA-4 are required for regulation of targeting this molecule from cytosolic- to membrane- area of activated human peripheral blood T lymphocyte.

Characteristics of fruiting bodies color mutants in Pleurotus ostreatus (원형느타리버섯 백색돌연변체의 특성)

  • Lee, Kang-Hyo;Kim, Gyu-Hyun;Kim, Beom-Gi;Yoo, Young-Bok;Sung, Jae-Mo
    • Journal of Mushroom
    • /
    • v.5 no.1
    • /
    • pp.34-38
    • /
    • 2007
  • The white-colored and the dark gray-colored mutants were frequently happened in cultivated areas of Pleurotus ostreatus (Wonhyeong-neutari). These caused conflicts between farmers and spawn companies. Our studies were conducted to elucidate the mechanism of mutagenesis. The results from the studies would provide valuable informations that could be used to prevent the color-related mutation, and also will be applied in breeding programs of P. ostreatus. Oyster mushroom variety, Wonhyeong-neutari, is somatic hybrid of Pleurotus and has genetic makers for arginine, ornithine, proline, riboflavine. Genetic markers analysis of monospore isolates derived from color mutants show identical tendency with that of Wonhyeong-neutari, these results indicate that color mutants were derived from Wonhyeongneutari. Twenty-one and four homokaryons were selected from the white-colored mutant MGL 2205 and gray-colored ASI 2029. All 34 F1 hybrids derived from the white-colored mutant MGL 2205 produce white-color fruiting bodies, indicating that the white color trait is heritable. In the first generation hybrids between the white-colored MGL 2205 and the gray-colored ASI 2029, all 16 hybrids produced pigmented fruiting bodies. Homokaryons isolated from the hybrid MGL 2205 X ASI 2029 were mated with homokaryon tester strains derived from MGL 2205. By these result, we could assumed that white color trait is a heritable character which is controlled by more than one recessive gene.

  • PDF