• Title/Summary/Keyword: Mushroom disease

Search Result 158, Processing Time 0.029 seconds

The Effect of Mushroom Extract as a Dietary Additive on the Nutritive Quality of Cultured Olive Flounder Paralichthys olivaceus (양식산 넙치(Paralichthys olivaceus)의 식품학적 품질 개선에 버섯추출물이 미치는 영향)

  • Shim, Kil-Bo;Kim, Ji-Hoe;Yoon, Ho-Dong;Choi, Hae-Seung;Cho, Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.785-790
    • /
    • 2011
  • This study investigated the nutritive quality of olive flounder Paralichthys olivaceus fed either moist pellet (MP) or moist pellet mixed with mushroom extract (MPME) for 6 months. There was no significant difference in crude protein or extractive nitrogen in the muscle of flounder fed MP versus MPME (P > 0.05). The total amino acid content in the muscle of flounder fed MP was $15.22{\pm}5.24$ g/100 g, compared to $19.90{\pm}2.90$ g/100 g for flounder fed MPME. Essential amino acid content was $7.04{\pm}2.21$ g/100 g in the muscle of flounder fed MP versus $8.94{\pm}2.50$ g/100 g for MPME. Total amino acid content was higher in the muscle of olive flounder fed MPME, while essential amino acid content was higher in flounder fed MP. The ratio of non-essential amino acids to essential amino acids was $0.86{\pm}0.07$ for flounder fed MP and $0.81{\pm}0.08$ for flounder fed MPME. There was no significant difference in free amino acid content and fatty acid composition. The breaking strength of muscle of olive flounder fed MP was higher ($1.44{\pm}0.51\;kg/cm^2$) than in flounder fed MPME ($1.29{\pm}0.30\;kg/cm^2$). There was no evidence that dietary additives, such as mushroom extract, increase growth rate or nutritive quality of olive flounder.

Characterization of the rcsA Gene from Pantoea sp. Strain PPE7 and Its Influence on Extracellular Polysaccharide Production and Virulence on Pleurotus eryngii

  • Kim, Min Keun;Lee, Sun Mi;Seuk, Su Won;Ryu, Jae San;Kim, Hee Dae;Kwon, Jin Hyeuk;Choi, Yong Jo;Yun, Han Dae
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.276-287
    • /
    • 2017
  • RcsA is a positive activator of extracellular polysaccharide (EPS) synthesis in the Enterobacteriaceae. The rcsA gene of the soft rot pathogen Pantoea sp. strain PPE7 in Pleurotus eryngii was cloned by PCR amplification, and its role in EPS synthesis and virulence was investigated. The RcsA protein contains 3 highly conserved domains, and the C-terminal end of the open reading frame shared significant amino acid homology to the helix-turn-helix DNA binding motif of bacterial activator proteins. The inactivation of rcsA by insertional mutagenesis created mutants that had decreased production of EPS compared to the wild-type strain and abolished the virulence of Pantoea sp. strain PPE7 in P. eryngii. The Pantoea sp. strain PPE7 rcsA gene was shown to strongly affect the formation of the disease symptoms of a mushroom pathogen and to act as the virulence factor to cause soft rot disease in P. eryngii.

Effect of Sodium Hypochlorite(NaOCl) Treatment On Bacterial Yellow Blotch in Oyster Mushroom, Pleurotus ostreatus (Sodium Hypochlorite(NaOCl) 처리가 느타리버섯의 세균성 갈반병에 미치는 효과)

  • Shin, Gwan-Chull;Cho, Soo-Muk;Jeon, Nak-Beom;Ku, Ja-Hyeong
    • The Korean Journal of Mycology
    • /
    • v.22 no.2
    • /
    • pp.190-195
    • /
    • 1994
  • Studies were conducted to determine the potential of sodium hypochlorite(SHC) on the control of bacterial yellow blotch in cultivated oyster mushroom, Pleurotus ostreatus. SHC at the concentration of 80 ppm was effective on the control of Pseudomonas agarici causing yellow blotch in oyster mushroom except number 916 isolate. In vitro the mycelial growth was slightly inhibited at the concentration higher than 100 ppm of sodium hypochlorite, but retardation of the mycelial growth was soon recovered. Spray of SHC solution at the concentration of 40-50 ppm per day significantly reduced the incidence of the yellow blotch without impairing the growth of oyster mushroom in field culture. However, the higher concentration of SHC(67 ppm) induced yellow brown or dark gray in color and deformed cap and elongated stripe in morphology of fruiting body. Results indicate that periodical spray of sodium hypochlorite seems to be the recommendable method for protection against bacterial yellow blotch disease in oyster mushroom without reducing food quality.

  • PDF

Effects of Shiitake mushroom extract on antimicrobial activity against periodontopathogens and inflammatory condition of human gingival fibroblast (치주 질환관련 세균의 항균 및 세포 염증에 대한 표고버섯 추출물의 효과)

  • Jeon, Yeol-Mae
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.2
    • /
    • pp.90-96
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate antimicrobial activity of extracts from shiitake mushroom against periodontopathogens and its cytotoxicity for human gingival fibroblast. Materials and Methods: Shiitake mushroom was soaked in water and acetone, and the supernatant was dried to collect its extract. The susceptibility of periodontopathogens for the extracts was investigated. Human gingival fibroblast was treated with the extracts, and the cell viability was measured CCK-8 solution. Results: The water extract from shiitake mushroom significantly reduced the growth of periodontopathogens at 2.5 mg/ml (P < 0.05). The acetone extract significantly inhibited the growth of Porphyromonas gingivalis and Tannerella forsythia at 0.32 mg/ml and Treponema denticola growth at 0.64 mg/ml (P < 0.05). The cytotoxicity of the extract was shown at a concentration of 2.5 mg/ml. The extracts with a concentration of 1.25 mg/ml appeared to be reduce cell viability after 4 h. Conclusion: The extracts of shiitake mushroom have antimicrobial activity against periodontitis-causing bacteria and relieving inflammation. Therefore, the extracts may be a candidate for preventing and treating periodontal disease.

Detection of Pseudomonas tolaasii Causing Brown Blotch Disease of Mushroom with Species-specific DNA Probe (종 특이 DNA probe를 이용한 버섯 세균성 갈반병 병원균(Pseudomonas tolaasii)의 검출)

  • Kwon, Soon-Wo;Go, Seung-Joo;Cheun, Meung-Sook;Kang, Hee-Wan;Oh, Se-Jong;Chang, Who-Bong;Ryu, Jin-Chang
    • The Korean Journal of Mycology
    • /
    • v.27 no.2 s.89
    • /
    • pp.132-137
    • /
    • 1999
  • This study was carried out to develop the molecular marker for the detection of Pseudomonas tolaasii, a causative agent of bacterial brown blotch disease of oyster mushroom (Pleurotus ostreatus). When several primers designed from repetitive sequences and pectin lyase genes of bacteria were used to produce DNA polymorphism from different Pseudomonas spp. isolated from edible mushrooms, PEU1 primer derived from pectin lyase gene produced polymorphic bands differentiating P. tolaasii strains from other Pseudomonas species. Two bands, 1.0kb and 0.4kb, found commonly in 6 isolates of P. tolaasii were cloned into pGEM-T vector which were designated as pPTOP1 and pPTOP2, respectively, to use as probe. The 0.4 kb insert of pPTOP2 hybridized to only 6 isolates of P. tolaasii, but did not to the other Pseudomonas species. As few as $1.5{\times}10^3$ colony forming unit (cfu) of P. tolaasii could be detected by dot blot hybridization with the cloned 0.4kb DNA in pPTOP2.

  • PDF

Occurrence and Identification of the Fungus Causing Yellow Rot on Ganoderma lucidum (불로초버섯 노랑썩음병의 발생과 병원균의 분류 동정)

  • Oh, Se-Jong;Chun, Chang-Sung;Lee, Jong-Kyu;Kim, Hee-Kyu
    • The Korean Journal of Mycology
    • /
    • v.26 no.1 s.84
    • /
    • pp.31-38
    • /
    • 1998
  • Since 1990, destructive yellow rots on Ganoderma lucidum caused by a soilborne fungus have been occurred in major cultivation areas of Korea. Incidences of the disease were 61% in Chulwon and 94% in Kanghwa area where the mushroom has been cultivated for 10 years, whereas the disease has not been found yet in new cultivation areas such as Moonkyung and Hongsung. when severely infected, inner tissues of bed-logs showed severe yellow and fruiting bodies of the mushroom was not produced. Infected tissues of bed-logs were readily distinguished from those of healthy ones by a distinctive brown border line. When the disease progressed, mycelia of Ganoderma lucidum were totally destroyed, and abundant ascocarps of the pathogen were formed inside the tissues of bed-logs showing yellowish green. The fungus derived from a single ascospore strongly lysed mycelia of Ganoderma lucidum growing on bottle media, and non-volatile components secreted by the pathogen were also highly inhibitory to mycelial growth of the mushroom fungus. The pathogen was identified as Arthrographis cuboidea based on its distinctive cultural and morphological characters. The fungus produced arthroconidia and unbrached conidiophores. The width of fungal conidia was distinctively wide as compared with the length. Colonies of the fungi were pale yellow to yellowish green on agar media. As a causal pathogen of yellow rot of Ganoderma lucidum., this fungus has not been reported yet in Korea.

  • PDF

Morphological Characteristics and URP-PCR Analysis of Hypocrea sp., a Weed Mould of Oyster Mushroom Cultivation (느타리버섯 유해균 Hypocrea sp.의 형태 및 URP-PCR 분석)

  • Seo, Geon-Sik;Kim, Byung-Ryun;Park, Myeung-Soo;Kim, Min-Kyung;Yu, Seung-Hun
    • The Korean Journal of Mycology
    • /
    • v.30 no.2
    • /
    • pp.86-94
    • /
    • 2002
  • Recently a serious outbreak of weed mould caused by a species of Hypocrea occurred in oyster mushroom (Pleurotus ostreatus) substrates in Korea. The disease was characterized by a rapid infestation of the oyster mushroom substrates by Hypocrea sp. and subsequent inhibition of fructification of the mushroom. In spite of it's serious losses to the oyster mushroom industry in Korea, etiology and ecology of the disease have not been studied. Morphological characteristics of the fungus were examined and molecular characteristics of the fungus were compared with those of the green moulds (Trichoderma spp.) isolated from oyster mushroom bed. Stromata formed superficially on suface of the substrates were pulvinate to effuse or irreguler, initially white but becoming yellowish brown, measuring $6.0{\sim}13.0{\times}3.0{\sim}11.0mm$. Perithecia were globose to subglobose, immersed in stroma, $223{\sim}263\;(Ave.239.9){\times}167.3{\sim}231\;(Ave.204.1){\mu}m$ in size. Asci were unitunicate, cylindrical, nonamyloid, $82.7{\sim}124.8\;(Ave.103.3){\times}4.1{\sim}5.1\;(Ave.4.9){\mu}m$ in size, 16 part-spored. Ascospores were bullet-shaped or somewhat oblong, hyaline, bicellular, roughened or warted, $5.4{\sim}7.4\;(Ave.6.5){\times}3.6{\sim}5.5\;(Ave.4.7){\mu}m$ in size. This fungus readily form the stroma on PDA. Mycelia on PDA nearly invisible and without cottony aerial mycelium. Optimum temperature for mycelial growth of this fungus was $25^{\circ}C$ on PDA and its growth rate was 15 mm per day. This species did not grow at below 10 and above $35^{\circ}C$. Phialides in culture enlarged in the middle and aggregated to penicillate type. They were very variable, shorted ampulliform and occasionally curved when matured, but cylinderical when young, measuring $11.9{\sim}24.3\;(Ave.\;14.7){\times}2.9{\sim}3.9\;(Ave.\;3.4){\mu}m$ when matured and $7.2{\sim}14.0\;(Ave.\;10.8){\times}2.8{\sim}4.9\;(Ave.\;3.5){\mu}m$ when young. Phialosopres were ovoid to ellipsoid, smooth, measuring $3.5{\sim}7.2\;(Ave.\;4.5){\times}2.6{\sim}3.3\;(Ave.\;2.9){\mu}m$. Nineteen isolates of Hypocrea sp. were analyzed on the basis of molecular characteristics and classified into phenotypic groups. On the basis of RAPD, URP-PCR, the fungus was confirm to monoclonal, and was classified as a different taxon from reported species of Hypocrea and Trichoderma and supposed to be a new species not previously reported in literature.

Tolaasin Forms Various Types of Ion Channels in Lipid Bilayer

  • Cho, Kwang-Hyun;Kim, Young-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.34-34
    • /
    • 1998
  • Tolaasin is a channel forming bacterial toxin produced by Pseudomonas tolaasii and causes a brown blotch disease on cultivated oyster mushrooms. When tolaasin molecules form channels in the membranes of mushroom cells, they destroy cellular membrane structure, known as 'colloid osmotic lysis'. In order to understand the molecular mechanisms forming membrane channels by tolaasin molecules, we have investigated the electrophysiological characteristics of tolaasin-induced channels in lipid bilayer.(omitted)

  • PDF