• Title/Summary/Keyword: Mushroom Facilities

Search Result 37, Processing Time 0.022 seconds

Heating Performance of Horizontal Geothermal Heat Pump System for Protected Horticulture (시설원예용 수평형 지열히트펌프의 난방 성능 해석)

  • Kang, Youn-Ku;Ryou, Young-Sun;Kang, Geum-Choon;Paek, Yee;Kim, Young-Joong
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.30-36
    • /
    • 2007
  • Geothermal heat pump systems use the earth as a heat source in heating mode and a heat sink in cooling mode. These systems can be used for heating or cooling systems in farm facilities such as greenhouses for protected horticulture, cattle sheds, mushroom house, etc. A horizontal type means that a geothermal heat exchanger is laid in the trench buried in 1.2 to 1.8 m depth. Because a horizontal type has advantages of low installation, operation and maintenance costs compared to a vertical type, it is easy to be adopted to agriculture. In this study, to heat and cool farm facilities and obtain basic data for practical application of horizontal geothermal heat pump systems in agriculture, a horizontal geothermal heat pump system of 10 RT scale was installed in greenhouse. Heating performance of this system was estimated. The horizontal geothermal heat pump used in this study had heating COP of 4.57 at soil temperature of 14$^{\circ}C$ for depth of 1.75m and heating COP of 3.75 at soil temperature of 7$^{\circ}C$ for the same depth. The stratification of water temperature in heat tank appeared during the whole heat rejection period.

The ptimum temperatures during cultivation period of Gastrodia elata according to growth stages (천마 생육단계별 변온에 의한 최적온도 및 재배기간)

  • Kim, Chang-Su;Kim, Hyo-Jin;Seo, Sang-Young;Kim, Hee-Jun;Lee, Wang-Hyu
    • Journal of Mushroom
    • /
    • v.16 no.2
    • /
    • pp.90-95
    • /
    • 2018
  • This study was carried out to investigate the optimum temperature and the cultivation period according to the different growth stages of Gastrodia elata (G. elata). The growth period for the indoor cultivation of G. elata is divided into four stages that require specific temperatures during the enlargement of the tuber. The optimum temperatures and cultivation periods during the growth stages of G. elata were observed to be $20^{\circ}C$ for 30 days during the mycelial growth stage (MGS), $25^{\circ}C$ for 120 days during the tuber formation stage (TFS), $6-24^{\circ}C$ for 60 days during the tuber enlargement stage (TES), and $5^{\circ}C$ for 30 days during the dormant stage (DS). The total cultivation period was shortened by 120 days in the indoor cultivation facilities by reduction of 30 days from the mycelial growth stage, addition of 30 days to the tuber formation stage, and reduction of 120 days from the dormancy stage as compared to the outdoor field cultivation. These results provide a basis for a growth model that permits year-round cultivation of G. elata.

Use of Sprinkler System for Production Forest Management of Pine Mushroom (Tricholoma matsutake) (살수장치(撒水裝置)를 이용(利用)한 송이산 관리(管理)에 관(關)한 연구(硏究))

  • Chung, Sang Bae;Kim, Chul Su
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.1 s.158
    • /
    • pp.21-25
    • /
    • 2005
  • In order to prevent the pine mushrooms, Tricholoma matsutake, from being damaged by the pine needle gall midges, Thecodiplosis japonensis, and thereby, to increase their production and improve their quality, a sprinkler system was installed on the mushroom field. A low-concentration insecticide (deltamethrin 1% EC, x2,000) was sprayed once at insects' most active time every day during the period of insects' adult occurrence and thereafter, the irrigation by ground water spraying was periodically enforced. Such a test was conducted at Yangyang-Gun, Kwangwon-do, Korea for 2 years from 2000 through 2001. The pine needle gall midges generally emerged for about 40 days from late May to early July. 50% emergence of them was about June 6, and peak emergence (more than 80%) was early or mid-June. Gall formation rate was 3.5% on average with this ground insecticide spraying, while 51.3% when not treated. Control effectiveness of this insecticide spraying was 92.3%, which was higher than 82.5% by the conventional injection of insecticide into tree stems. Pine mushrooms emerged for about 35 days from mid-September through earlier October, and around 80% of them did for about 15 days from late September through early October. As a result of the periodic ground water-spraying (30 mm per week) for 2 months (from August to October), the production of mushrooms increased by 74.3% (110% in terms of weight), with their quality improvement. The mushrooms produced from the treated stand by the spraying system were priced 8,670,000 wons per hectare, and thus, the net income deducting the facility and management cost was 4,310,000 wons, about 5% higher than value from the control stand. It was analyzed that this treatment was significantly cost effective when the facilities are used more than 5 years.

Cultural characteristics of commercial strain Kunneutari #3 of Pleurotus eryngii (큰느타리버섯(Pleurotus eryngii) 품종 큰느타리3호의 재배적 특성)

  • Cheong, Jong-Chun;Hong, In-Pyo;Jang, Kab-Yeul;Park, Jeong-Sik;Jhune, Chang-Sung
    • Journal of Mushroom
    • /
    • v.3 no.1
    • /
    • pp.31-34
    • /
    • 2005
  • This experiment was carried out to examine on the physiological and cultural characteristics of commercial strain Kunneutari #3 of Pleurotus eryngii. The optimal medium suitable for mycelial growth was YM, and followed by MCM and PDA. Also this strain more faster mycelial growth as 6.1 cm/7days compared with commercial strain P. eryngii #1. The optimal mycelial growth temperature was $25{\sim}30^{\circ}C$. The fruitbody yield was increased 54% with $117{\pm}16g/850m{\ell}$ and the fruitbody shape and qualities of this strain was good. And individual weight was $41{\pm}27g$. Spawn run of P. eryngii #3 in bottle cultivation took 30 days and also it took 21 days from scratching of inoculum to harvest that was shorter 3 days than P. eryngii #1, respectively. Therefore, it is expected that cultivation for P. eryngii #3 strain will improve farmer's income by enhancing efficiency of facilities and shorten 6 days on cultivation period, in addition, getting more growing cycle of P. eryngii.

  • PDF

Analysis of Environment Factors in Pleurotus eryngii Cultivation House of Permanent Frame Type Structure (영구형 큰느타리버섯 재배사의 환경요인 분석)

  • Yoon Yong-Cheol;Suh Won-Myung;Lee In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.15 no.2
    • /
    • pp.125-137
    • /
    • 2006
  • Pleurotus eryngii is one of the most promising mushrooms produced on the domestic farms. The quality as well as quantity of Eryngii is sensitively affected by micro climate factors such as temperature, relative humidity, $CO_2$ concentration, and light intensity. To safely produce high-quality Eryngii all the yew round, it is required that the environmental factors be carefully controlled by well designed structures equipped with various facilities and control systems. At the commercial mushroom cultivation houses of permanent frame type (A, B), this study was carried out to find out reasonable range of each environmental factor and yield together with economic and safe structures influencing on the optimal productivity of Eryngii. This experiment was conducted for about two-year ken Nov. 2003 to Dec. 2005 in cultivation house. Ambient temperature during the experiment period was not predominantly different from that of a normal year. The capacity of the hot water boiler and the piping systems were not enough. Because the capacity of electric heater and air circulation were not enough, air temperatures in cultivation house before improvement of system were maintained somewhat lower than setting temperature, and maximum air temperature difference between the upper and lower growth stage during a heating time period was about 5.1. But the air temperatures after system improvement were maintained within the limits range of setting temperature without happening stagnant of air. Air temperature distribution was generally distributed uniform. Relative humidity in cultivation house before , improvement was widely ranged about $44{\sim}100%$. But as the relative humidity after improvement was ranged approximately $80{\sim}100%$, it was maintained within the range of relative humidity recommended. And $CO_2$ concentration was maintained about $400{\sim}3,300mg{\cdot}L^{-1}$ range. The illuminance in cultivation house was widely distributed in accordance with position, and it was maintained lower than the recommended illuminance range $100{\sim}200lx$. The acidity of midium was some lower range than the recommend acidity range of pH $5.5{\sim}6.5$. The yield was relatively ununiform. In case of bottle capacity of 1,300cc, the mushroom of the lowest grade was less than 3%. The consumption electric energy was quite different according to the cultivation season. The electric energy consumed during heating season was much more than that of cooling season.

Effect of Reversible Air-circulation Fans on Air Uniformity in a Cultivation Facility for Oyster Mushroom (느타리재배사 정역 제어 대류팬이 공기 균일도에 미치는 영향)

  • Yum, Sung Hyun;Kim, Si Hwan
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2021
  • It has been known that oyster mushrooms cultivated in facilities with thermal insulation have been strongly affected by inner environments. Forced air-circulation fans exert much direct influence on disturbing air inside the facility so the matter is of particular interest. This study is carried out to investigate the measured levels of air uniformity in a cultivation facility for oyster mushroom in the various cases that reversibly controlled air-circulation fans which drove the flow in the upward and reverse direction by turn and unidirectional fans by which the wind blew upwards only were operated from July 1 to 10. The actual survey for the selection of ongoing operation cases presented that farmers, even though there were some discrepancies, have made use of fans in a way that it paused for 5-30min after running for 5-15min by turn. The level of air uniformity in the case of adopting reversible fans revealed a slight difference of 1.4-1.8℃ (Temp.) and 7.8-8.7% (R.H.) under the condition of not using a cooler during the investigation period. By contrast, unidirectional fans showed a noticeable difference of 3.2-3.7℃ and 14.0-15.4%, which meant that air uniformity driven by reversible fans much more increased compared to that for unidirectional fans. Among the twenty operational applications considered for reversible fans, the circumstance that the wind blew upwards for 10-15min and ceased for 5-10min and blew again in the reverse direction for 10-15min in succession gave minor improvements at the level of air uniformity, but at present there was somewhat difficult to make decision on which cases were optimally best. It seems necessary that the effects of reversible fans on air uniformity as well as qualities of oyster mushrooms have to be appraised in the cultivation period and the flow visualization needs to be done to ascertain the performance of air mixture.

Study on the Activation Plan for Utilization of Agri-food by-products as Raw Materials for TMR (TMR 원료로 이용하는 농식품 부산물 사료 이용 활성화 방안에 관한 연구)

  • Chung, Sung Heon;Park, Hyun Woo;Kwon, Byung Yeon;Gu, Gyo Yeong;Bang, Seo Yeon;Park, Kyung Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.296-306
    • /
    • 2014
  • This study was conducted to survey and analyze the quantity of various organic wastes and to vitalize the utilization of agri-food by-products as raw materials for Total mixed ration (TMR), to improve feed cost savings and the quality of animal products. On-the-spot obstacles for animal farmers, along with legal and institutional alternatives are presented. The results are as follows. First, organic wastes in Korea are managed by the Allbaro system created in the Wastes Control Act, which processes 10,488 tons of cooking oil waste, 832,493 tons of animal and plant residues, 5,740 tons of animal carcasses, 1,171,892 tons of animal residues, and 2,172,415 tons of plant residues including 12,905 tons of rice hull and bran, for a total of 4,205,931 tons. Raw materials for TMR, namely rice hulls and bran as well as plant residues, accounted for 51.7% of the total national organic waste. The top 10 municipalities process 76~100% of all organic wastes and a supply management system is needed for the waste. Second, the 10 major agri-food by-products used as raw materials for TMR are bean curd by-product, rice bran, oil-cake, brewers dried grain, Distiller's Dried Grains with Solubles (DDGS), barley bran, soy sauce by-product, citrus fruit by-product, mushroom by-product and other food by-product (bread, noodles, snacks, etc.). Third, the biggest difficulties in using agri-food by-products are legal obstacles. Because agri-food by-products are regulated as industrial wastes by the Waste Control Act, animal farmers that wish to use them have legal reporting obligations including the installation of recycling facilities. To enable the use of agri-food by-products as raw materials for TMR, waste management system improvements such as 'the end of waste status' and the establishment of more than 10 public distribution centers nationwide are deemed essential.