Browse > Article
http://dx.doi.org/10.5307/JBE.2007.32.1.030

Heating Performance of Horizontal Geothermal Heat Pump System for Protected Horticulture  

Kang, Youn-Ku (National Institute of Agricultural Engineering)
Ryou, Young-Sun (National Institute of Agricultural Engineering)
Kang, Geum-Choon (National Institute of Agricultural Engineering)
Paek, Yee (National Institute of Agricultural Engineering)
Kim, Young-Joong (National Institute of Agricultural Engineering)
Publication Information
Journal of Biosystems Engineering / v.32, no.1, 2007 , pp. 30-36 More about this Journal
Abstract
Geothermal heat pump systems use the earth as a heat source in heating mode and a heat sink in cooling mode. These systems can be used for heating or cooling systems in farm facilities such as greenhouses for protected horticulture, cattle sheds, mushroom house, etc. A horizontal type means that a geothermal heat exchanger is laid in the trench buried in 1.2 to 1.8 m depth. Because a horizontal type has advantages of low installation, operation and maintenance costs compared to a vertical type, it is easy to be adopted to agriculture. In this study, to heat and cool farm facilities and obtain basic data for practical application of horizontal geothermal heat pump systems in agriculture, a horizontal geothermal heat pump system of 10 RT scale was installed in greenhouse. Heating performance of this system was estimated. The horizontal geothermal heat pump used in this study had heating COP of 4.57 at soil temperature of 14$^{\circ}C$ for depth of 1.75m and heating COP of 3.75 at soil temperature of 7$^{\circ}C$ for the same depth. The stratification of water temperature in heat tank appeared during the whole heat rejection period.
Keywords
Heat pump; Heating performance; Coefficient of performance (COP); Geothermal heat exchanger; Protected horticulture;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hepbasli, A. and O. Akdemir. 2004. Energy and exergy analysis of a ground source(geothermal) heat pump system. Energy conversion and management 45:737-753   DOI   ScienceOn
2 Ozgener, O. and A. Hepbasli. 2005. Performance analysis of a solar-assisted ground-source heat pump system for green-house heating : an experimental study. Building and Environment 40:1040-1050   DOI   ScienceOn
3 강호철, 김영복, 김성태, 민영봉. 1999. 냉난방 열펌프시스템의 성능시뮬레이션. 한국농업기계학회지 학술대회지. pp.104-111
4 기상청. www. kma. go. kr. 연별극값자료-최저기온
5 김보철, 이진욱, 이재훈. 2005. 특허로 본 히트펌프의 기술개발동향. 설비저널 34(9):16-21
6 김영복, 백이. 1996. 지중매설관 열교환장치의 성능분석(I). 한국농업기계학회지 21(4):436-448
7 농림부 통계. 2003. pp.62-64
8 손병후, 조성식, 신현준, 안형준. 2005. 지열원 열펌프 시스템의 냉.난방 성능 평가. 설비공학논문집 17(1):71-81   과학기술학회마을
9 송현갑 외 5인. 1993. 시설원예 자동화. 문운당. pp.85-142
10 윤동윤. 2003. 지열히트펌프를 이용한 냉난방시스템기술의 특성. 설비/냉동공조위생(7, 226). pp.41-53
11 윤용철, 서원명. 1997. 시설원예용 히트펌프의 기능과 시스템. 한국농공학회지 39(4):5-13
12 임효재, 송윤석, 공형진, 박성구. 2004. 지열 냉난방 시스템의 성능 및 경제성 평가. 한국에너지공학회지 13(4):296-300
13 정재동, 김주혁, 조성환, 2004. 축열조 성능에 미치는 디퓨져형상의 영향. 설비공학논문집 16(4):374-382
14 Ozgener, O. and A. Hepbasli. 2005. Experimental performance analysis of a solar assisted ground-source heat pump green-house heating system. Energy and buildings 37:101-110   DOI   ScienceOn
15 윤정인. 2004. 지열히트펌프의 기술개발 동향. 한국냉동공학학회지. pp.811-816
16 Doherty, P. S., S. Al-Huthaili, S. B. Riffat and N. Abodahab. 2004. Ground source heat pump - description and preliminary results of the Eco House system. Applied thermal engineering 24:2627-2641   DOI   ScienceOn