• Title/Summary/Keyword: Muscle morphology

Search Result 135, Processing Time 0.037 seconds

Effect of Exercise Training on Aging Atrophy in Rat Skeletal Muscle II. Effect of Long Term Weight-Training (흰쥐 골격근의 노화성 위축에 대한 운동훈련의 영향 - II. 장기간에 걸친 체중부하 훈련의 영향 -)

  • Park, Sung-Han;Park, Won-Hark;Lee, Yong-Deok;Kim, Jung-Ki
    • Applied Microscopy
    • /
    • v.25 no.4
    • /
    • pp.26-51
    • /
    • 1995
  • The present study was designed to examine effect of long term weight-training on aging atrophy in the rat skeletal muscle. Male rats of 8, 15, and 24 month old were used. Each age groups included control and weight-training for 5 months by using body press apparatus. The histo- and cytochemical, ultrastructural and stereological changes in aging skeletal muscles of the rat were observed in the present study. During the training period the body weight and muscular weight in all groups except the rectus femoris and the gastrocnemius in young age groups remained constant, but muscular weights were increased in the rectus femoris and the gastrocnemius muscles in young age groups. In trained rat, the volume density of muscle fiber type IIA and IIB were increased, but those of type IIC was decreased. Type I remained constant in 8 and 15 month old age groups, but reduced in the tibialis anterior and the gastrocnemius muscles in the 24 month old groups. Some histotological and ultrastructural changes associated with age were found: numerical increase of cytiplasmic vacuoles, lysosomes, lipofuscins, and irregularity of myofibrils. At 24 month old groups some unusual formation of contraction band and muscle splitting were observed. After weight-training, ultrastructural degenerative changes occured in the type I muscle fiber, such as splitting of muscle fiber, disorganization of myofilaments, swelling of mitochondria, accumulation of many lipid droplets, appearance of many lysosomes and residual bodies and necrotic fibers, in the old age groups. But, in the type II muscle fibers hypertrophy of muscle fiber appeared without any noticible damage as the type I. The activities of $Mg^{++}$ -ATPase decreased with age and this enzyme activities in the trained rat were significantly decreased with age. Activities of the acid phosphatase were increased with age and significantly in the trained rat. In stereological analysis, volume density of the myofibrils and the tubular system were increased, on the other hand there mitochondrial capacity was decreased. These experimental results suggested that old rats are not susceptible to be affected by weight-training as young rats, and that physical capacity of the rats must be considered when old rats are exercised for training.

  • PDF

Effects of High-fat Diet on Type-I Muscle Loss in Rats (고지방식이가 쥐의 Type-I 근육손실에 미치는 영향)

  • Baek, Kyung-Wan;Cha, Hee-Jae;Park, Jung-Jun
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1509-1515
    • /
    • 2013
  • The term lipotoxicity has been used to describe how excess lipid accumulation leads to cellular dysfunction and death in non-adipose tissues, including skeletal muscle. While lipotoxicity has been found in cultured skeletal muscle cells with high-fat feeding, the consequences of lipotoxicity in vivo are still unknown, particularly in Type-I muscle, which is metabolically affected by lipotoxicity. The aim of this study was to investigate the effects of a high-fat diet on changes in the morphology and apoptotic protein expression of Type-I muscle loss in rats. The rats were fed either a high-fat diet or a normal diet for six weeks, and then lipid accumulation, inflammation response, and nucleus infiltration were measured, and PARP protein expression was cleaved by Oil Red O staining, H & E staining, and Western blot, respectively. Lipid accumulation, inflammation response, nucleus infiltration, and cleaved PARP protein expression were significantly (p<0.05) higher in the high-fat diet group than they were in the normal diet group. The weight of Type-I muscle tended to be lower in the high-fat diet group compared to the normal diet group, but the difference was not statistically significant. These results indicate that a high-fat diet triggers cell death in Type-I muscle via lipotoxicity, which suggests that a high-fat diet may be associated with sarcopenia.

Effects of dietary valine:lysine ratio on the performance, amino acid composition of tissues and mRNA expression of genes involved in branched-chain amino acid metabolism of weaned piglets

  • Xu, Ye Tong;Ma, Xiao Kang;Wang, Chun Lin;Yuan, Ming Feng;Piao, Xiang Shu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.106-115
    • /
    • 2018
  • Objective: The goal of this study was to investigate the effects of dietary standard ileal digestible (SID) valine:lysine ratios on performance, intestinal morphology, amino acids of liver and muscle, plasma indices and mRNA expression of branched-chain amino acid (BCAA) metabolism enzymes. Methods: A total of 144 crossbred pigs (Duroc${\times}$Landrace${\times}$Large White) weaned at $28{\pm}4days$ of age ($8.79{\pm}0.02kg$ body weight) were randomly allotted to 1 of 4 diets formulated to provide SID valine:lysine ratios of 50%, 60%, 70%, or 80%. Each diet was fed to 6 pens of pigs with 6 pigs per pen (3 gilts and 3 barrows) for 28 days. Results: Average daily gain increased quadratically (p<0.05), the villous height of the duodenum, jejunum and ileum increased linearly (p<0.05) as the SID valine:lysine ratio increased. The concentrations of plasma ${\alpha}-keto$ isovaleric and valine increased linearly (p<0.05), plasma aspartate, asparagine and cysteine decreased (p<0.05) as the SID valine:lysine ratio increased. An increase in SID lysine:valine levels increased mRNA expression levels of mitochondrial BCAA transaminase and branched-chain ${\alpha}-keto$ acid dehydrogenase in the longissimus dorsi muscle (p<0.05). Conclusion: Using a quadratic model, a SID valine:lysine ratio of 68% was shown to maximize the growth of weaned pigs which is slightly higher than the level recommended by the National Research Council.

A Taxonomical Study on the Shell Morphology of Blue Mussel, Mytilus edulis galloprovincialis Lamarck in Korea and Japan (한국산 및 일본산 진주담치의 패각형태에서 본 분류학적 고찰)

  • YOO Myong-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.3
    • /
    • pp.165-170
    • /
    • 1992
  • The internal shell morphology of the blue mussel, which were collected from Korea and Japan were studied. The range of the mean ratio between anterior adductor muscle scars to shell height in each locality were between 62.47 in Yongdok to 54.17 in Uichang. These values were very similar to that of M galloprouincialis in Mediterranean than that of M edulis in Europe. And the range of the mean ratio between hinge plate length to shell height were between 61.31 in Jukbyon to 56.15 in Otuschi. Also these values were similar to that of M. galloprovincialis in Mediterranean. Based on the mean ratio between anterior adductor muscle scars and hinge plate length to shell height, it was suggested that the Korean and Japanese blue mussel is certainly identical to the Mediterranean species, Mytilus galloprovincialis.

  • PDF

Rheumatic Arthritis-induced Alteration of Morphology and Function in Muscles

  • Hong, Yun-Kyung;Kim, Joo-Heon;Javaregowda, Palaksha Kanive;Lee, Sang-Kil;Lee, Sang-Rae;Chang, Kyu-Tae;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.151-157
    • /
    • 2011
  • Clinical arthritis is typically divided into rheumatoid arthritis (RA) and osteoarthritis (OA). Arthritis-induced muscle weakness is a major problem in aged people, leading to a disturbance of balance during the gait cycle and frequent falls. The purposes of the present study were to confirm fiber type-dependent expression of muscle atrophy markers induced by arthritis and to identify the relationship between clinical signs and expression of muscle atrophy markers. Mice were divided into four experimental groups as follows: (1) negative control (normal), (2) positive control (CFA+acetic acid), (3) RA group (CFA+acetic acid+type II collagen), and (4) aging-induced OA group. DBQA/1J mice (8 weeks of age) were injected with collagen (50 ${\mu}g/kg$), and physiological (body weight) and pathological (arthritis score and paw thickness) parameters were measured once per week. The gastrocnemius muscle from animals in each group was removed, and the expression of muscle atrophy markers (MAFbx and MuRF1) and myosin heavy chain isoforms were analyzed by reverse transcription-polymerase chain reaction. No significant change in body weight occurred between control groups and collagen-induced RA mice at week 10. However, bovine type II collagen induced a dramatic increase in clinical score or paw thickness at week 10 (p<0.01). Concomitantly, the expression of the muscle atrophy marker MAFbx was upregulated in the RA and OA groups (p<0.01). A dramatic reduction in myosin heavy chain (MHC)-$I{\beta}$ was seen in the gastrocnemius muscles from RA and OA mice, while only a slight decrease in MHC-IIb was seen. These results suggest that muscle atrophy gene expression occurred in a fiber type-specific manner in both RA- and OA-induced mice. The present study suggests evidence regarding why different therapeutic interventions are required between RA and OA.

Ameliorative Effects of Soybean Leaf Extract on Dexamethasone-Induced Muscle Atrophy in C2C12 Myotubes and a C57BL/6 Mouse Model (콩잎 추출물의 근위축 개선 효과)

  • Hye Young Choi;Young-Sool Hah;Yeong Ho Ji;Jun Young Ha;Hwan Hee Bae;Dong Yeol Lee;Won Min Jeong;Dong Kyu Jeong;Jun-Il Yoo;Sang Gon Kim
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1036-1045
    • /
    • 2023
  • Sarcopenia, a condition characterized by the insidious loss of skeletal muscle mass and strength, represents a significant and growing healthcare challenge, impacting the mobility and quality of life of aging populations worldwide. This study investigated the therapeutic potential of soybean leaf extract (SL) for dexamethasone (Dexa)-induced muscle atrophy in vitro and in an in vivo model. In vitro experiments showed that SL significantly alleviated Dexa-induced atrophy in C2C12 myotube cells, as evidenced by preserved myotube morphology, density, and size. Moreover, SL treatment significantly reduced the mRNA and protein levels of muscle RING-finger protein-1 (MuRF1) and muscle atrophy F-box (MAFbx), key factors regulating muscle atrophy. In a Dexa-induced atrophy mouse model, SL administration significantly inhibited Dexa-induced weight loss and muscle wasting, preserving the mass of the gastrocnemius and tibialis anterior muscles. Furthermore, mice treated with SL exhibited significant improvements in muscle function compared to their counterparts suffering from Dexa-induced muscle atrophy, as evidenced by a notable increase in grip strength and extended endurance on treadmill tests. Moreover, SL suppressed the expression of muscle atrophy-related proteins in skeletal muscle, highlighting its protective role against Dexa-induced muscle atrophy. These results suggest that SL has potential as a natural treatment for muscle-wasting conditions, such as sarcopenia.

Protective Effect of water extract Phellinus linteus-discard Schisandra chinensis solid fermented extracts on improvement of sarcopenia by Atorvastatin-induced muscle atrophy cell model (Atorvastatin으로 유도된 근위축 세포모델에서 상황-오미자박 고상발효물 열수추출물의 보호효과)

  • Kim, Young-Suk;Hwang, Su-Jin;Park, Kwang-Il;Lim, Jong-Min;Cheon, Da-Mi;Jung, Yu Jin;Jeon, Byeong Yeob;Kwak, Kyeung Tae;Oh, Tae Woo
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.239-252
    • /
    • 2021
  • Objectives : This study is to effect of improving muscle atrophy through water extract on the solid-phase fermentation extraction with Phellinus linteus of discarded Schisandra chinensis in an atorvastatin-induced atrophy C2C12 cell. Methods : C2C12 myoblast were differentiated into myotube by 2% horse serum medium for 6 days, and then treated solid-phase fermentation(S-P) extract at different concentrations for 24h. To investigate the effect of S-P extract on the induction of muscle atrophy and expression of atrophy-related genes and apoptosis in differentiated C2C12 myotubes using a GSH, ROS, real-time PCR, western blots analysis. Results : As a result of treatment with atorvastatin at concentrations of 5, 10, and 20 uM on the 6th day of differentiation in C2C12 myotube cells, it was confirmed that the cell morphology was damaged in a concentration-dependent manner, and the length and thickness of the myotube also decreased in a concentration-dependent manner. Treatment with S-P extract (50, 100 and 200 ㎍/㎖) increased of GSH and inhibited ROS in the atorvastatin-induced muscle atrophy cell model at a concentration that did not induce toxicity. In addition, it was confirmed that it has an effect on muscle reduction by inhibiting apoptosis of muscle cells as well as being involved in protein production and degradation of muscle cells. Conclusions : Atorvastatin-induced atrophy C2C12 cell, S-P extract activates related to differentiation/generation and proteolysis, and inhibits cell death of atrophy in C2C12 cell. Based on this, it is necessary to prove its effectiveness through animal models and human application test, but it is considered to be discarded Schisandra chinensis can present the potential for development as a recycling industrial material.

The Gradient Model of the Rabbit Sinoatrial Node

  • Dobrzynski, H.;Lei, M.;Jones, S.A.;Lancaster, M.K.;Boyett, M.R.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.4
    • /
    • pp.173-181
    • /
    • 2002
  • The sinoatrial (SA) node is a complex and inhomogeneous tissue in terms of cell morphology and electrical activity. There are two models of the cellular organisation of the sinoatrial node: the gradient and mosaic models. According to the gradient model there is a gradual transition in morphology and electrical properties of SA node cells from the centre to the periphery of the SA node. In the mosaic model, there is a variable mix of atrial and sinoatrial node cells from the centre to the periphery. This review focuses on the cellular organisation of the rabbit sinoatrial node in terms of the expression of connexin (Cx40, Cx43 and Cx45), L-type $Ca^{2+}$ channel and $Na^+-Ca^{2+}$ exchanger proteins. These immunocytochemical data, together with morphological and electrophysiological data, obtained from the intact sinoatrial node and isolated sinoatrial node cells support the gradient model of the cellular organisation of the SA node. The complex organisation of the sinoatrial node is important for the normal functioning of the sinoatrial node: (i) it allows the sinoatrial node to drive the surrounding hyperpolarized atrial muscle without being suppressed by it; (ii) it helps the pacemaker activity of the sinoatrial node continue under a wide range of physiological and pathophysiological conditions; (iii) it helps protect the sinoatrial node from reentrant arrhythmias.

Histopathological alterations of the rat myocardium under simulated microgravity (미세중력 환경에 노출된 백서 심근 조직의 병리학적 변화)

  • Kim, Hyun-Soo;Kim, Youn Wha
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.3
    • /
    • pp.63-67
    • /
    • 2012
  • Spaceflight induces a number of cardiovascular physiological alterations. To study adaptations to microgravity on Earth, the tail-suspended, hindlimb-unloaded rat model has been used to simulate the effects of microgravity. Despite the extensive use of this model to infer physiological adaptations of many organs to microgravity, little information has been obtained on the effect of tail suspension(TS) on cardiac adaptations in the rat. This study was aimed to investigate the effects of simulated microgravity on the rat myocardium using the TS model. Twenty-four male Sprague-Dawley rats were randomly assigned to 3 experimental groups(1, 7 and 14 days of TS) and a control group. A microscopic examination was performed to assess histopathological changes in the myocardial morphology. The hearts from the control group, the 1 day-TS rats and the 7 day-TS rats revealed no evident abnormalities in cardiomyocyte size and morphology. At day 14 of TS, in contrast, the ventricular cardiomyocytes appeared more separated from each other and were slightly smaller in size compared with those of the control group. Also seen were scattered areas exhibiting focal disorganization of muscle fibers and some degenerating cardiomyocytes, of which the nuclei had become pyknotic or disappeared. In this study, we demonstrated that the ventricular cardiomyocytes underwent degeneration and atrophy at the microscopic level during exposure to simulated microgravity in TS rats.

Effects of Ultraviolet Irradiation on the Differentiation of Cultured Chicken Pectoralis Muscle Cells (培養 鷄胚 筋細胞分化에 미치는 紫外線의 영향)

  • Chung, Hae-Moon;Nham, Sang-Uk
    • The Korean Journal of Zoology
    • /
    • v.24 no.4
    • /
    • pp.189-200
    • /
    • 1981
  • Drastic alterations in myogenesis could be induced by ultraviolet irradiation of the myogenic cells derived from 12 day old chick embryo skeletal muscle. The effects of irradiation on various aspects, including cell division, transformation to myotubes, and morphology of myoblasts and myotubes, were examined. Irradiated cells were smaller in size, and only few cells transformed resulting in smaller size of myotubes with a narrow width. Both the inhibiting actions to cell division and to fusion were more striking when irradiated at earlier stages after plating. As well, cell division and fusion were inhibited more effectively with increasing UV dose and excessive amount caused cell death. A lowering cell density was thought to account for the decrease in myogenesis and possible reasons for the decrease in the capacity for fusion were discussed in view of the results presented in this report and of the findings from other laboratories.

  • PDF