• Title/Summary/Keyword: Muscle chain

Search Result 379, Processing Time 0.025 seconds

Molecular Cloning of the Myosin Light Chain-2 cDNA of Gryllotalpa orientalis

  • Cha, So Young;Hwang, Jae Sam;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.1
    • /
    • pp.127-130
    • /
    • 2004
  • We describe here the cloning and characterization of a cDNA encoding a putative myosin light chain-2 (MLC-2) from the mole cricket, Gryllotalpa orientalis. The G. orientalis MLC-2 cDNA sequences comprised of 615 bp with 205 amino acid residues with a calculated molecular weight of approximately 23 kDa. The deduced protein sequence of G. orientalis MLC-2 cDNA showed 64% and 54% identity to Drosophila melanogaster MLC-2 and D. yakuba MLC-2, respectively. Northern blot analysis confirmed the muscle-specific expression of G. orientalis MLC-2.

Relationship Between Strength of Hip Muscles and Performance of Close Kinetic Chain Dynamic Lower Extremity Stability Test

  • Lee, Hyeon-ju;Hwang, Ui-jae;Jung, Sung-hoon;Ahn, Sun-hee;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.27 no.4
    • /
    • pp.257-263
    • /
    • 2020
  • Background: The hip muscle plays various roles. Several types of functional performance tests are used for the assessment of patients with various lower extremity injuries. Hip muscle functions are important to test the performance of maintaining the spine, pelvic, and leg during bridging exercise. We designed a novel functional performance test tool, which we named close kinetic chain dynamic lower extremity stability (CKCLE) test to assess hip muscle functions. Objects: The purpose of this study was to determine the relationship between CKCLE test and hip extensor, external rotator, and abductor strengths. Methods: Twenty-two subjects were recruited in the present study (13 males and 9 females). The hip extensor, external rotator, and abductor muscle strengths were measured using a Smart KEMA strength sensor. When the examiner said "Go", the subject performed the CKCLE test by moving one leg from the floor and touching the opposite knee and then return to the floor while maintaining the bridging position. The subjects attempted as many "touches" as possible in the allotted time (20 seconds) during the maximal tests. The correlation between the hip muscle (extensor, external rotator, and abductor) strength of the supporting leg and the number of CKCLE tests performed in 20 seconds was determined using the Pearson correlation. Results: Hip extensor (r = 0.626, p < 0.05), hip external rotator (r = 0.616, p < 0.05), and hip abductor muscle strengths (r = 0.475, p < 0.05) positively correlated with the number of CKCLE tests performed. Conclusion: We designed a CKCLE test and found that performance in the test correlated with hip extensor, external rotator, and abductor muscle strengths. The result suggests that the CKCLE test can be applied as a performance test to assess the functions of the hip extensor, external rotator, and hip abductor muscles.

A Study About Analysis Results for Kudoa septempunctata (Myxosporea: Multivalvulida) in Tissue at Olive Flounder, using PCR (polymerase chain reaction) and Histological Methods (PCR (polymerase chain reaction)법과 조직학적 방법을 통한 넙치 조직에서의 Kudoa septempunctata (Myxosporea: Multivalvulida)의 분석에 관한 연구)

  • Do, Jeong Wan;Cho, Miyoung;Jung, Sung Hee;Lee, Nam-Sil
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.468-475
    • /
    • 2017
  • This study is for the consideration of the existence tendency of Kudoa septempunctata in olive flounder. In general, muscle has shown a strong PCR positive reaction in spores containing tissues rather than non-containing tissues. However, blood PCR results showed opposed tendency. In various organs of the tested fish containing spores in muscle tissue, heart had shown positive reaction along with muscle at PCR analysis. Muscle fiber necrosis was observed at the histological observation, and this degeneration was common in both samples. The one sample was the PCR positive muscle containing spore and the other was the PCR positive muscle non-containing spore. Both of muscle tissues indicated a positive reaction at ISH (in-situ hybridization) against K. septempunctata.

The Impact of COVID 19 on the Meat Supply Chain in the USA: A Review

  • Whitehead, Dalton;Kim, Yuan H. Brad
    • Food Science of Animal Resources
    • /
    • v.42 no.5
    • /
    • pp.762-774
    • /
    • 2022
  • The COVID 19 pandemic resulted in a considerable influence on the world economy. Being a big sector of the economy, the food supply chain struggled. The meat supply chain was most notably affected as every part of the supply chain from farm to shelf was closely inter-related. With the closure of businesses and restaurants the demand for at home food from grocery stores increased. Meat production facilities were impacted when the virus spread to the workers causing facilities to close or line speeds to slow. The combination of these two issues, in turn, led to there being less meat on the shelves. With less meat animals being harvested, there was less demand for livestock leading to farmers having an excess in slaughter ready animals. The decreased demand for livestock led to economic issues as money was lost in multiple sections of the supply chain. Aside from the economy and supply chain issues, other issues include concerns over the safety of meat products due to decreased safety protocols to increase line speed. Additionally, concerns of animal welfare with the excess of animals being culled were raised due to decreased capacity in processing facilities. While this review paper mainly focuses on characterizing the impact of COVID 19 on the meat supply chain in the USA, the compiled information should be able to provide practical insights to the meat/food industry across the globe to develop potential mitigating strategies against the COVID 19 and/or any similar pandemic incidences in the future.

Aerobic Exercise Ameliorates Muscle Atrophy Induced by Methylglyoxal via Increasing Gastrocnemius and Extensor Digitorum Longus Muscle Sensitivity

  • Seong-Min Hong;Eun Yoo Lee;Jinho Park;Jiyoun Kim;Sun Yeou Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.573-582
    • /
    • 2023
  • Muscle atrophy is characterized by the loss of muscle function. Many efforts are being made to prevent muscle atrophy, and exercise is an important alternative. Methylglyoxal is a well-known causative agent of metabolic diseases and diabetic complications. This study aimed to evaluate whether methylglyoxal induces muscle atrophy and to evaluate the ameliorative effect of moderate-intensity aerobic exercise in a methylglyoxal-induced muscle atrophy animal model. Each mouse was randomly divided into three groups: control, methylglyoxal-treated, and methylglyoxal-treated within aerobic exercise. In the exercise group, each mouse was trained on a treadmill for 2 weeks. On the last day, all groups were evaluated for several atrophic behaviors and skeletal muscles, including the soleus, plantaris, gastrocnemius, and extensor digitorum longus were analyzed. In the exercise group, muscle mass was restored, causing in attenuation of muscle atrophy. The gastrocnemius and extensor digitorum longus muscles showed improved fiber cross-sectional area and reduced myofibrils. Further, they produced regulated atrophy-related proteins (i.e., muscle atrophy F-box, muscle RING-finger protein-1, and myosin heavy chain), indicating that aerobic exercise stimulated their muscle sensitivity to reverse skeletal muscle atrophy. In conclusion, shortness of the gastrocnemius caused by methylglyoxal may induce the dynamic imbalance of skeletal muscle atrophy, thus methylglyoxal may be a key target for treating skeletal muscle atrophy. To this end, aerobic exercise may be a powerful tool for regulating methylglyoxal-induced skeletal muscle atrophy.

Activity Screening of the Proteolytic Enzymes Responsible for Post-mortem Degradation of Fish Tissues (어류의 사후 변화에 관여하는 단백질분해효소의 검색)

  • PYEUN Jae-Hyeung;LEE Dong-Soo;KIM Doo-Sang;HEU Min-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.296-308
    • /
    • 1996
  • Proteolytic enzymes responsible for post-mortem degradation of the fish tissues have been studied in regard with screening the proteases distributed in the fish body by reacting with the specific synthesized substrates. Activities of cathepsin L, B, H, G, and D like enzymes were detected in the muscle crude protease from the both kind of fish, dark fleshed fish (anchovy, Engraulis japonica, and gizzard-shad, Clupanodo punctatus) and white fleshed fish (seabass, Lateolabrax japonicus, and sole, Pleuronichthys cornutus), however, those of chymotrypsin, trypsin, pepsin, and peptidase like enzymes were observed 3n the viscera crude pretense from the fish. Proteolytic activities of the muscle crude protease at pH 6.0 were similar to those of the viscera crude protease at pH 8.0, but, those of the viscera crude protease at pH 8.0 were about 2 times higher than those at pH 6.0. The muscle and viscera crude protease from anchovy showed the strongest proteolytic activity among the four fish crude proteases and the proteolytic activity of the viscera crude protease was approximately 100 times higher than that of the muscle crude protease, which suggest that viscera proteases were more contributed on the development of post-mortem changes than muscle proteases. With the degradation patterns on SDS-polyacrylamide gel electrophoresis against yellowtail myofibrillar proteins, the muscle and viscera crude protease of the four fishes were primary responsible for the degradation of myosin heavy chain, and myosin light chain and actin, respectively.

  • PDF

Immediate Effects of Using the PNF Contract-Relax Technique in the Close Kinetic Chain Position on the Gait Ability and Gastrocnemius Muscle Tone of Stroke Patients (닫힌 사슬 자세에서의 PNF 수축-이완 기법이 뇌졸중 환자의 장딴지 근육 긴장도와 보행능력에 미치는 즉각적 효과)

  • Moon, Sang-Hyun
    • PNF and Movement
    • /
    • v.15 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • Purpose: The purpose of this study was to determine the immediate effects of using the proprioceptive neuromuscular facilitation (PNF) contract-relax technique in the close kinetic chain position on the gait ability and gastrocnemius muscle tone of stroke patients. Methods: The subjects were patients who had strokes due to cerebrum infarction and hemorrhage. The subjects participated in exercise with the PNF contract-relax technique in the standing-on-elbow position with a high table, and the affected lower leg was placed in the posterior position. The PNF contract-relax technique was applied at the position in which the ankle plantar-flexors were in a sufficiently elongated position. After performing twice in each range, while the muscle was elongated, the affected side was moved further back and a new range was set. In each session, the time of contraction was set to 8 seconds, and the resting time was set to 5 seconds; however, if the patient felt tired, they received more resting time during the intervention. The Myoton Pro and 10 m walking test were used to measure the muscle tone and gait ability both pre- and post-intervention. Results: After participating in the program, the muscle tone decreased and the gait ability improved in the ankle plantar-flexors, as determined by the Myoton Pro and 10 m walking test. Conclusion: The PNF contract-relax technique can help to decrease muscle tone in ankle plantar-flexors with hypertonus and increase the gait ability in stroke patients.

Approach for 4 Groups of tentatively named "Muscle Coordinative Manipulation" in Korean Medicine (가칭 근육조정술의 4체형 분류에 따른 근육 배속의 한의학적 접근)

  • Hong, Seong-Min;Oh, Min-Seok
    • Journal of Haehwa Medicine
    • /
    • v.21 no.1
    • /
    • pp.135-141
    • /
    • 2012
  • Objectives : This study was conducted to understand 4 groups in tentatively named "muscle coordinative manipulation" by Korean medicine. Methods : We researched some articles on meridian-muscle theory and muscle's action that are classified into 4 groups in muscle coordinative manipulation. Results : The outcome of examining the hypothesis is as follows: 1. The 1st hypothesis : 'Elevated shoulder' group mainly consists of muscles that are involved with shoulder elevation, abduction and external rotation. 'Lowered shoulder' group is mainly composed of muscles that acts of shoulder depression, adduction and internal rotation. 'Elevated pelvis' & 'Lowered pelvis' groups didn't show significant features by the movement of the hips. 2. The 2nd hypothesis : Most of muscles in 'elevated & lowered shoulder' groups are classified into 'hand taiyang' meridian-muscle. Most of muscles in 'elevated pelvis' group are included in 'foot jueyin' meridian-muscle. Most of muscles in 'lowered pelvis' group are classified into 'foot taiyang & foot yangming' meridian-muscle. Conclusions : There is no significant classification in muscles that comprise 4 groups in muscle coordinative manipulation when it comes to meridian-muscle theory and muscle function. More studies on chain reaction of muscle and subsequent analysis in Korean medicine are needed.

The Effect of Chain Exercise Types on the Exercise Performance Improvement in Lower Limb Exercise for the Life-Carement (라이프케어먼트를 위한 신체운동수행능력 향상에 사슬운동형태가 미치는 효과 연구)

  • Yang, Seung-Hoon
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.8
    • /
    • pp.391-396
    • /
    • 2020
  • This study was to examined the effect of chain types exercise of lower limbs on the motor performance differences for the life-carement. For this, twenty normal adult women participated and they were examined the differences of exercise effects about abdominal muscle activity and balance ability by applying two types of chain exercise. In order to identify the differences we let them conduct exercise for 4 weeks with each type of exercise. And we used paired t-test and Independent sample t-test for comparing the differences in the group and inter groups. There was a significant difference in the value of 0.05 to verify statistical significance. As a result of this research, it was found that closed chain exercise is more effective than open chain exercise in muscle activity and balance function. Therefore, in the clinical therapeutic environment, if you apply chain exercise for patient to improve lower limb motor performance, we would recommend the close kinematic chain exercise.

Rheumatic Arthritis-induced Alteration of Morphology and Function in Muscles

  • Hong, Yun-Kyung;Kim, Joo-Heon;Javaregowda, Palaksha Kanive;Lee, Sang-Kil;Lee, Sang-Rae;Chang, Kyu-Tae;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.151-157
    • /
    • 2011
  • Clinical arthritis is typically divided into rheumatoid arthritis (RA) and osteoarthritis (OA). Arthritis-induced muscle weakness is a major problem in aged people, leading to a disturbance of balance during the gait cycle and frequent falls. The purposes of the present study were to confirm fiber type-dependent expression of muscle atrophy markers induced by arthritis and to identify the relationship between clinical signs and expression of muscle atrophy markers. Mice were divided into four experimental groups as follows: (1) negative control (normal), (2) positive control (CFA+acetic acid), (3) RA group (CFA+acetic acid+type II collagen), and (4) aging-induced OA group. DBQA/1J mice (8 weeks of age) were injected with collagen (50 ${\mu}g/kg$), and physiological (body weight) and pathological (arthritis score and paw thickness) parameters were measured once per week. The gastrocnemius muscle from animals in each group was removed, and the expression of muscle atrophy markers (MAFbx and MuRF1) and myosin heavy chain isoforms were analyzed by reverse transcription-polymerase chain reaction. No significant change in body weight occurred between control groups and collagen-induced RA mice at week 10. However, bovine type II collagen induced a dramatic increase in clinical score or paw thickness at week 10 (p<0.01). Concomitantly, the expression of the muscle atrophy marker MAFbx was upregulated in the RA and OA groups (p<0.01). A dramatic reduction in myosin heavy chain (MHC)-$I{\beta}$ was seen in the gastrocnemius muscles from RA and OA mice, while only a slight decrease in MHC-IIb was seen. These results suggest that muscle atrophy gene expression occurred in a fiber type-specific manner in both RA- and OA-induced mice. The present study suggests evidence regarding why different therapeutic interventions are required between RA and OA.