• Title/Summary/Keyword: Muscle chain

Search Result 380, Processing Time 0.028 seconds

Changes Occurred in Protein and Amino Acid Compositions during Postmortem Aging of White and Dark Muscle of Yellowtail at $2^{\circ}C$ (방어 보통육과 혈합육의 단백질 및 아미노산조성의 사후변화)

  • KIM Chang-Yang;CHOI Yeung-Joon;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.2
    • /
    • pp.123-136
    • /
    • 1982
  • We investigated the changes in protein and free amino acid compositions of the muscles, and amino acid composition of the muscle proteins during postmortem storage of dorsal white and lateral dark muscles of Yellowtail, Seriola quinqueradita, which were kept at $2^{\circ}C$. We present an extensive discussion on the relationship between the changes of freshness and those of protein compositions in the white and the dark muscle of the red-fleshed fish by analyzing polyacrylamide gel electrophoretograms of $NaDodSO_4-solubilized$ sarcoplasmic and myofibrillar proteins extracted from the both muscles. By assessing K-value, total volatile basic nitrogen and pH value as a criterion of freshness, we found that the dark muscle undergoes a more rapid decrease in its freshness compared to that of the white muscle. The contents of the sarcoplasmic and the myofibrillar protein were decreased with postmortem aging of the muscles while those of the residual intracellular protein were increased, and these changes were somewhat faster in the dark muscle than in the white muscle. From the analysis of the electrophoretograms and their densitograms, we found that the sarcoplasmic proteins of the white and the dark muscle were respectively composed of 16 and 12 components. The sarcoplasmic protein of the white muscle lapsed for 10 days showed an increase of 18,000 and 41,000 dalton components, and a gradual decrease of 23,000 and 23,500 dalton components, whereas the sarcoplasmic protein of the dark muscle lapsed for 9 days showed a decrease of 49,000 dalton component, an appearence of a newly formed component of 47,000 dalton, and a disappearance of 26,000 dalton component. The electrophoretograms of the myofibrillar proteins shelved that the white and the dark muscle were composed of 17 and 16 components, respectively. Depending on the lapsed time of postmortem under the controlled condition, the myofibrillar proteins of the white muscle showed an increase of 40,000 dalton component, a gradual decrease of 37,500 dalton component, an appearance of a newly forming component of 32,000 dalton and a disappearance of 26,000 dalton component. On the other hand, the myofibrillar proteins of the dark muscle showed an increase of 58,000 and 64,000 dalton bands, a disappearance of light chain-2 protein and an appearance of a newly forming protein of 32,000 dalton. These changes on the electrophoretic patterns in the dark muscle were more rapid than those in the white muscle. In almost all of the cases, we observed that the changes in the sarcoplasmic protein were faster than those in the myofibrillar protein. The analysis of amino acid of the both muscle proteins showed that the white muscle was rich in glutamic acid, aspartic acid, leucine, arginine, lysine, etc. but was poor in proline and tryptophan. No significant difference was found in the amino acid composition of protein of both the white and the dark muscles. The sample of white muscle lapsed for 10 days shows a remarkable decrease in glutamic and aspartic acids, while that of the dark muscle lapsed for 9 days shows an appreciable decrease in alanine, glycine and arginine. The free amino acid compositions of the white and the dark muscles are respectively characterized with $63\%$ of histidine and $67\%$ of taurine with respect to the total free amino acids of the yellowtail at-death, respectively. The white muscle lapsed for 10 days showed an increase of histidine, valine and taurine, and a slight decrease of alanine, leucine and glycine. The dark muscle lapsed for 9 days shelved an increase of taurine, phenylalanine and glycine, and a decrease of histidine, alanine and serine.

  • PDF

Isolation and identification of goose skeletal muscle satellite cells and preliminary study on the function of C1q and tumor necrosis factor-related protein 3 gene

  • Wang, Han;He, Ke;Zeng, Xuehua;Zhou, Xiaolong;Yan, Feifei;Yang, Songbai;Zhao, Ayong
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1078-1087
    • /
    • 2021
  • Objective: Skeletal muscle satellite cells (SMSCs) are significant for the growth, regeneration, and maintenance of skeletal muscle after birth. However, currently, few studies have been performed on the isolation, culture and inducing differentiation of goose muscle satellite cells. Previous studies have shown that C1q and tumor necrosis factor-related protein 3 (CTRP3) participated in the process of muscle growth and development, but its role in the goose skeletal muscle development is not yet clear. This study aimed to isolate, culture, and identify the goose SMSCs in vitro. Additionally, to explore the function of CTRP3 in goose SMSCs. Methods: Goose SMSCs were isolated using 0.25% trypsin from leg muscle (LM) of 15 to 20 day fertilized goose eggs. Cell differentiation was induced by transferring the cells to differentiation medium with 2% horse serum and 1% penicillin streptomycin. Immunofluorescence staining of Desmin and Pax7 was used to identify goose SMSCs. Quantitative realtime polymerase chain reaction and western blot were applied to explore developmental expression profile of CTRP3 in LM and the regulation of CTRP3 on myosin heavy chains (MyHC), myogenin (MyoG) expression and Notch signaling pathway related genes expression. Results: The goose SMSCs were successfully isolated and cultured. The expression of Pax7 and Desmin were observed in the isolated cells. The expression of CTRP3 decreased significantly during leg muscle development. Overexpression of CTRP3 could enhance the expression of two myogenic differentiation marker genes, MyHC and MyoG. But knockdown of CTRP3 suppressed their expression. Furthermore, CTRP3 could repress the mRNA level of Notch signaling pathway-related genes, notch receptor 1, notch receptor 2 and hairy/enhancer-of-split related with YRPW motif 1, which previously showed a negative regulation in myoblast differentiation. Conclusion: These findings provide a useful cell model for the future research on goose muscle development and suggest that CTRP3 may play an essential role in skeletal muscle growth of goose.

Effects of polygalacin D extracted from Platycodon grandiflorum on myoblast differentiation and muscle atrophy (길경에서 추출한 polygalacin D가 근원세포 분화 및 근위축에 미치는 영향)

  • Eun-Ju Song;Ji-Won Heo;Jee Hee Jang;Eonmi Kim;Yun Hee Jeong;Min Jung Kim;Sung-Eun Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.6
    • /
    • pp.602-614
    • /
    • 2023
  • Purpose: The balance between synthesis and degradation of proteins plays a critical role in the maintenance of skeletal muscle mass. Mitochondrial dysfunction has been closely associated with skeletal muscle atrophy caused by aging, cancer, and chemotherapy. Polygalacin D is a saponin derivative isolated from Platycodon grandiflorum (Jacq.) A. DC. This study aimed to investigate the effects of polygalacin D on myoblast differentiation and muscle atrophy in association with mitochondrial function in in vitro and in zebrafish models in vivo. Methods: C2C12 myoblasts were cultured in differentiation media containing different concentrations of polygalacin D, followed by the immunostaining of the myotubes with myosin heavy chain (MHC). The mRNA expression of markers related to myogenesis, muscle atrophy, and mitochondrial function was determined by real-time quantitative reverse transcription polymerase chain reaction. Wild type AB* zebrafish (Danio rerio) embryos were treated with 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI) with or without polygalacin D, and immunostained to detect slow and fast types of muscle fibers. The Tg(Xla.Eef1a1:mitoEGFP) zebrafish expressing mitochondria-targeted green fluorescent protein was used to monitor mitochondrial morphology. Results: The exposure of C2C12 myotubes to 0.1 ng/mL of polygalacin D increased the formation of MHC-positive multinucleated myotubes (≥ 8 nuclei) compared with the control. Polygalacin D significantly increased the expression of MHC isoforms (Myh1, Myh2, Myh4, and Myh7) involved in myoblast differentiation while it decreased the expression of atrophic markers including muscle RING-finger protein-1 (MuRF1), mothers against decapentaplegic homolog (Smad)2, and Smad3. In addition, polygalacin D promoted peroxisome proliferator-activated receptor-gamma coactivator (Pgc1α) expression and reduced the level of mitochondrial fission regulators such as dynamin-1-like protein (Drp1) and mitochondrial fission 1 (Fis1). In a zebrafish model of FOLFIRI-induced muscle atrophy, polygalacin D improved not only mitochondrial dysfunction but also slow and fast muscle fiber atrophy. Conclusion: These results demonstrated that polygalacin D promotes myogenesis and alleviates chemotherapy-induced muscle atrophy by improving mitochondrial function. Thus, polygalacin D could be useful as nutrition support to prevent and ameliorate muscle wasting and weakness.

Effect of dietary supplementation with Spirulina on the expressions of AANAT, ADRB3, BTG2 and FASN genes in the subcutaneous adipose and Longissimus dorsi muscle tissues of purebred and crossbred Australian sheep

  • Kashani, Arash;Holman, Benjamin William Behrens;Nichols, Peter David;Malau-Aduli, Aduli Enoch Othniel
    • Journal of Animal Science and Technology
    • /
    • v.57 no.3
    • /
    • pp.8.1-8.8
    • /
    • 2015
  • Background: The demand for healthy, lean and consistent meat products containing low saturated fatty acid content and high quality polyunsaturated fatty acids (PUFA), especially long-chain (${\geq}C_{20}$) omega-3 PUFA, has increased in recent times. Fat deposition is altered by both the genetic background and dietary supplements, and this study aimed to assess the effect of dietary Spirulina supplementation levels on the mRNA expression patterns of genes controlling lipid metabolism in the subcutaneous adipose tissue (SAT) and Longissimus dorsi (ld) muscle of Australian crossbred sheep. Methods: Twenty-four weaned lambs belonging to four breeds under the same management conditions were maintained on ryegrass pasture and fed three levels of Spirulina supplement (control, low and high). In terms of nutrient composition, Spirulina is a nutrient-rich supplement that contains all essential amino acids, vitamins and minerals. It also is a rich source of carotenoids and fatty acids, especially gamma-linolenic acid (GLA) that infer health benefits. After slaughter, subcutaneous adipose tissue (SAT) and ld samples were subjected to mRNA extraction and reverse transcription using quantitative polymerase chain reaction (RT-qPCR) to assess the mRNA expression levels of the Aralkylamine N-acetyltransferase (AANAT), Adrenergic beta-3 receptor (ADRB3), B-cell translocation gene 2 (BTG2) and Fatty acid synthase (FASN) genes, which are associated with lipid metabolism. Results: Both low and high Spirulina supplementation levels strongly up-regulated the transcription of all the selected genes in both SAT and ld tissues (mostly in the subcutaneous adipose), but sheep breed and sex did not influence the gene expression patterns in these tissues. Conclusions: The evidence indicates that high Spirulina supplementation level resulted in a decrease in intramuscular fat content in Australian purebred and crossbred sheep due to the enhanced production of melatonin in sheep muscle tissues and strong up-regulation of mRNA expression of BTG2 in SAT which negatively affected fat deposition. In contrast, low Spirulina supplementation level strongly up-regulated the ADRB3 and FASN genes responsible for fat production. These findings are consistent with the observed phenotypic data suggesting that low Spirulina supplementation level can increase lamb production, with higher long-chain PUFA content.

Coinfected cases with equine herpesvirus type 1, 4 and Streptococcus equi subsp. zooepidemicus in throughbred horse

  • Kim, Seong-Guk;Cho, Gil-Jae;Cho, Min-Hee;Kim, Young-Hoan;Lee, Hong-Young;Choi, Jeong-Hye;Kim, Jeong-Hwa;Choi, Seong-Kyoon
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.2
    • /
    • pp.187-190
    • /
    • 2011
  • The Thoroughbred horse was an approximately 4-years-old castrated male with highly emaciation, nasal epistaxis and subsequently died. Gross necropsy revealed epistaxis and hyperemia on the lung, multiple hemorrhage in muscle, and liver was focally attached to the peritoneum with fibrin. According to polymerase chain reaction (PCR), Equine herpes virus type 1 and 4 (EHV type 1, 4) was detected in the lung and trachea. In bacterial culture from kidney, liver, spleen, muscle and blood, Streptococcus equi subsp. zooepidemicus was isolated. Based on the gross lesion and PCR, this horse was diagnosed as EHV type 1, 4 and S. zooepidemicus coinfection.

Fatty acid uptake and oxidation in skeletal muscle

  • Yun, Hea-Yeon;Tamura, Tomohiro;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Long chain fatty acids (LCFAs) are transported into cells via plasma transporters, are activated to fatty acyl-CoA by fatty acyl-CoA synthase (ACS), and enter mitochondria via the carnitine system (CPT1/CACT/CPT2). The mitochondrial carnitine system plays an obligatory role in β-oxidation of LCFAs by catalyzing their transport into the mitochondrial matrix. Fatty acyl-CoAs are oxidized via the β-oxidation pathway, which results in the production of acetyl-CoA. The acetyl-CoA can be imported into the tricarboxylic acid (TCA) cycle for oxidation in the mitochondrial matrix or can be used for malonyl-CoA synthesis by acetyl-CoA carboxylase 2 (ACC2) in the cytoplasm. In skeletal muscle, ACC2 catalyzes the carboxylation of acetyl-CoA to form malonyl-CoA, which is a potent endogenous inhibitor of carnitine palmitoyltransferase 1 (CPT1). Thus, ACC2 indirectly inhibits the influx of fatty acids into the mitochondria. Fatty acid metabolism can also be regulated by malonyl-CoA-mediated inhibition of CPT1.

Alternative Methods for Testing Botulinum Toxin: Current Status and Future Perspectives

  • Nepal, Mahesh Raj;Jeong, Tae Cheon
    • Biomolecules & Therapeutics
    • /
    • v.28 no.4
    • /
    • pp.302-310
    • /
    • 2020
  • Botulinum toxins are neurotoxic modular proteins composed of a heavy chain and a light chain connected by a disulfide bond and are produced by Clostridium botulinum. Although lethally toxic, botulinum toxin in low doses is clinically effective in numerous medical conditions, including muscle spasticity, strabismus, hyperactive urinary bladder, excessive sweating, and migraine. Globally, several companies are now producing products containing botulinum toxin for medical and cosmetic purposes, including the reduction of facial wrinkles. To test the efficacy and toxicity of botulinum toxin, animal tests have been solely and widely used, resulting in the inevitable sacrifice of hundreds of animals. Hence, alternative methods are urgently required to replace animals in botulinum toxin testing. Here, the various alternative methods developed to test the toxicity and efficacy of botulinum toxins have been briefly reviewed and future perspectives have been detailed.

Identification of Large Deletion of Mitochondrial DNA in Kearns-Sayre Syndrome (KSS)

  • Kim, Sang-Ho
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.1-4
    • /
    • 1999
  • Large-scale deletions of mitochondrial DNA(mtDNA) have been documented in patients with mitochondrial myopathies and seem to be especially frequent in patients with Kearns-Sayre syndrome (KSS). About one third of all patients shows a 4,977 bp deletion, known as the "common deletion", that removes a segment of DNA that includes several genes encoding for respiratory chain subunits. In this disorder, the population of deleted mtDNA molecules coexists with population of normal, wild-type full length mtDNAs, a situation known as heteroplasmy. We have performed polymerase chain reaction (PCR) on paraffin-embedded muscle tissues from two korean KSS patients. The PCR analysis revealed the existence of two amplified fragments, the deleted fragments, the deleted fragment of 123 bp characteristic for common deletion and the wild-type fragment of 152 bp.of 152 bp.

  • PDF

Relationship between Condition Index Values and Expression Levels of Gene and Protein in the Adductor Muscle of Diploid and Triploid Oysters Crassostrea gigas

  • Su-Jin Park;Youn Hee Choi
    • Development and Reproduction
    • /
    • v.26 no.4
    • /
    • pp.165-174
    • /
    • 2022
  • Three proteins [myosin heavy chain (MHC), filamin-C fragment (FIL-C), and actin 2 (ACT2)] were identified in adductor muscle from diploid and triploid Pacific oysters (Crassostrea gigas) and the relationship between the condition index (CI) and mRNA expression of these genes was investigated, together with the mRNA expression of molluscan insulin-related peptide (MIP), C. gigas insulin receptor-related receptor (CIR), and insulin-like growth factor binding protein complex acid labile subunit (IGFBP-ALS). Monthly changes in the CI were similar to the changes in the tissue weight rate in both groups. ACT2 and MHC mRNA expression was statistically higher in the triploid than the diploid, while FIL-C mRNA expression was significantly higher in the diploid (p<0.05). The MIP, CIR, and IGFBP-ALS mRNA expression of the diploid oysters were all significantly higher in July than in other months (p<0.05). The MIP, CIR, and IGFBP-ALS mRNA expression in the triploid oysters was high in July, but there were no significant differences (p>0.05). Changes in the expression levels of the genes investigated in this study could be used as intrinsic indicators of the annual growth, maturity, and spawning period of cultured diploid and triploid C. gigas in Tongyeong, Korea.

Effect of Chicken Age on Proliferation and Differentiation Abilities of Muscle Stem Cells and Nutritional Characteristics of Cultured Meat Tissue

  • Chan-Jin Kim;So-Hee Kim;Eun-Yeong Lee;Young-Hwa Hwang;Seung-Yun Lee;Seon-Tea Joo
    • Food Science of Animal Resources
    • /
    • v.44 no.5
    • /
    • pp.1167-1180
    • /
    • 2024
  • This study aimed to investigate effects of chicken age on proliferation and differentiation capacity of muscle satellite cells (MSCs) and to determine total amino acid contents of cultured meat (CM) produced. Chicken MSCs (cMSCs) were isolated from hindlimb muscles of broiler chickens at 5-week-old (5W) and 19-embryonic-day (19ED), respectively. Proliferation abilities (population doubling time and cell counting kit 8) of cMSCs from 19ED were significantly higher than those from 5W (p<0.05). Likewise, both myotube formation area and expression of myosin heavy chain heavy of cMSCs from 19ED were significantly higher than those from 5W (p<0.05). After cMSCs were serially subcultured for long-term cultivation in 2D flasks to produce cultured meat tissue (CMT), total amino acid contents of CMT showed no significant difference between 5W and 19ED chickens (p>0.05). This finding suggests that cMSCs from chicken embryos are more suitable for improving the production efficiency of CM than those derived from young chickens.