• 제목/요약/키워드: Muscle Reaction Force

Search Result 65, Processing Time 0.028 seconds

Comparative Study of the Biomechanical Factors in Range of Motion, Muscle Activity, and Vertical Ground Reaction Force between a Forward Lunge and Backward Lunge

  • Park, Samho;Huang, TianZong;Song, Junyoung;Lee, Myungmo
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.2
    • /
    • pp.98-105
    • /
    • 2021
  • Objective: The purpose of this study was to examined the kinematic relationship and differences through the range of motion (ROM), muscle activity, and vertical ground reaction force (VGRF) during forward and backward lunge movements, which are effective in improving muscle strength and balance ability of the lower extremities, and to provide clinical information on more efficient lunge movements. Design: Cross-sectional study Methods: Fifteen adult males who met the selection criteria were tested for their dominant feet.Forward and backward lunges were then performed, and the ROM, muscle activity, and VGRF were measured for kinematic analysis during the lunge movement.The differences betweenthe forward lunge and backward lunge intervention were examined using a paired t-test. Results: A significant increase in the ROM of the knee and ankle was observed during the forward and backward lunges (p<0.05). In addition, in terms of the muscle activity, the peak values of the vastus medialis oblique (VMO) and VGRF also showed a significant increase in the forward lunge compared to the backward lunge (p<0.05). Conclusions: This study showed an increase in VGRF peak value, knee and ankle ROM, and VMO muscle activity during forward lunge. Based on these results, it is considered necessary to apply differently depending on the direction of progress in consideration of the musculoskeletal situation and physical ability during the lunge movement.

Comparison of EMG and Muscle Reaction Force to Detect Exercise Intention (운동의도 검출을 위한 근육반력과 근전도의 비교)

  • Heo, J.H.;Kim, J.W.;Kwon, Y.R.;Eom, Gwang-Moon;Jeong, K.Y.;Kwon, D.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Activeness of exercise is critical for stroke rehabilitation so that application of stimulation in response to patient's intention would be effective in FES cycling. The purpose of this study was to investigate the relationship between muscle reaction force (MRF) and electromyogram (EMG) during cycling exercise, for the future usage of MRF as patients' intention signal. Seven young men ($24{\pm}1.63$ yrs) participated in this study. Cycling speed was set to 20 RPM and 60 RPM. MRF and EMG were measured in the vastus lateralis muscle of right leg. Active cycling was performed at the maximal load (16 Nm) of an ergometer. Angle dependent artifact in MRF was measured from passive cycling and was subtracted from the MRF of active cycling. The delay of MRF with respect to EMG envelope and their correlation coefficients were derived from the best of cross correlation. MRF was significantly correlated with EMG amplitude in all subjects (p<0.01). Their mean correlations were 0.84 and 0.91 for 20 RPM and 60 RPM, respectively. Mean delay in MRF was 59.14 ms and 53.14 ms for 20 RPM and 60 RPM, respectively. The result suggests that MRF can be used to assess patient's intention for exercise as a substitute to EMG. The method may be applied to FES cycling to encourage patient's effort which is critical for stroke rehabilitation.

Effect of Rehabilitation Exercise for Golfers on the X-factor and Ground Reaction Force according to Phase of the Golf Swing

  • yoon, Junggyu;Cho, Byungyun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.1
    • /
    • pp.1706-1710
    • /
    • 2019
  • Background: Despite frequent shoulder injuries of rotator cuff muscle of golfers by the result of overuse and poor swing mechanics, there is little research on shoulder specific rehabilitation exercises for injured rotator cuff muscle and golf swing Objective: To examined the effect of rehabilitation exercise for golfers on the X factor and ground reaction force (GRF) according to phase of the golf swing. Design: Crossover study Methods: The participants were 13 amateur golfers selected for a 4 week rehabilitation exercise for golfers. A rehabilitation exercise for golfers consisting of 5 steps and 4 items (sleeper stretch, full side plank, push up to plank, high plank knee unders) were applied to all participants. A three dimensional motion analyzer and force platform (SMART-E, BTS, Italy) were used to measure the X factor (angle between shoulder and pelvis at top of back swing) and GRF according to phase of the golf swing. All dependent variables were measured before and after exercise. The collected data was analyzed using the paired t test and SPSS 21.0. Results: The GRF had a statistically significant increase in the impact phase and ratio impact/weight after rehabilitation exercise for golfers (p<.05). The X-factor, GRF in top of back swing and finish were no significant differences between before and after exercise (p>.05). Conclusions: These results suggested that rehabilitation exercise for golfers was effective for increasing GRF in the impact phase and ratio impact/weight for amateur golfer.

Prediction of Moments and Muscle Forces at the Knee Joint in Deep Flexion (무릎 관절의 고굴곡에 대한 모멘트와 근력의 추정)

  • Cho, Bong-Jo;Moon, Byoung-Young;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1262-1269
    • /
    • 2004
  • This study predicts muscle forces acting on the lower extremity when the knee joint is in deep flexion. The whole body was approximated as a link model, and then the moment equilibrium equations at the lower extremity joints were derived far given reaction farces against the ground. Measurement of deep flexion was carried out by placing ten markers on the body. This study calculated the moment acting at each Joint from the equations of force and moment, classified the complicated muscles around the knee joint, and then predicted the muscle forces to balance the joint moment. Two models were proposed in this study: the simpler one that consists of three groups of muscle and the more detailed one of nine groups of muscle.

Prediction of Muscle Forces for the Knee Joint in Deep Flexion (고굴곡 동작 해석을 위한 무릎 관절 작용 근력의 분류)

  • Cho, Bong-Jo;Son, Kwon;Moon, Byung-Young
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1288-1293
    • /
    • 2003
  • This study predicts muscle forces acting on the lower extremity when the knee joint is in deep flexion. The whole bodies were approximated as a link model, and then the moment equilibrium equations at the lower extremity joints were derived for given reaction forces against the ground. Measurement of deep flexion was carried out by placing ten markers on the body. This study calculated the moment acting at each joint from the equations of force and moment, classified the complicated muscles around the knee joint. and then predicted the muscle forces to balance the joint moment. Two models were proposed in this study: the simpler one that consists of three groups of muscle and the more detailed one of nine groups of muscle.

  • PDF

Influence of Spine Orthosis and Sit-to-Stand Motor Strategies on Ground Reaction Force and Lower Extremity Muscle Activity (척추보조기 착용과 일어서기 운동전략이 지면반발력과 하지근활성도에 미치는 영향)

  • Kim, Do-Kyun;Kim, Tack-Hoon;Roh, Jung-Suk;Cynn, Heon-Seock
    • Physical Therapy Korea
    • /
    • v.13 no.3
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study was to assess the influence of spine orthosis and sit-to-stand motor strategies on ground reaction force (GRF) and lower extremity muscle activity. Twenty healthy adult men participated, and subjects randomly performed sit-to-stand motions in three different conditions: Momentum-transfer strategy (MTS); MTS with spine orthosis; and zero-momentum strategy (ZMS) with spine orthosis. GRF data, onset time, and muscle activity were determined and compared using force plate and electromyography. Data were statistically analyzed by the SPSS version 13.0. One-way repeated analysis of variance (ANOVA) was used to determine the statistical significance, and least significant difference was used as a post hoc test. The level of significance was .05. The results of this study were as follows: 1. Peak GRF and relative time to peak GRF were not significantly different in the three different conditions (p>.05). 2. Onset time of four muscles, tibialis anterior, gastrocnemius, biceps femoris and rectus femoris, in the three different conditions were significantly different (p<.05). 3. The tibialis anterior and rectus femoris muscle activity before hip-off and tibialis anterior, gastrocnemius, and rectus fermoris muscle activity after hip-off were significantly different in the three different conditions (p<.05).

  • PDF

Variation of Paraspinal Muscle Forces according to the Lumbar Motion Segment Fusion during Upright Stance Posture (직립상태 시 요추 운동분절의 유합에 따른 척추주변 근력의 변화)

  • Kim, Young-Eun;Choi, Hae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.130-136
    • /
    • 2010
  • For stability analysis of the lumbar spine, the hypothesis presented is that the disc has stress sensors driving feedback mechanism, which could react to the imposed loads by adjusting the contraction of the muscles. Fusion in the motion segment of the lumbar spinal column is believed to alter the stability of the spinal column. To identify this effect finite element (FE) models combined with optimization technique was applied and quantify the role of each muscle and reaction forces in the spinal column with respect to the fusion level. The musculoskeletal FE model was consisted with detailed whole lumbar spine, pelvis, sacrum, coccyx and simplified trunk model. Vertebral body and pelvis were modeled as a rigid body and the rib cage was constructed with rigid truss element for the computational efficiency. Spinal fusion model was applied to L3-L4, L4-L5, L5-S1 (single level) and L3-L5 (two levels) segments. Muscle architecture with 46 local muscles was used as acting directions. Minimization of the nucleus pressure deviation and annulus fiber average axial stress deviation was selected for cost function. As a result, spinal fusion produced reaction changes at each motion segment as well as contribution of each muscle. Longissimus thoracis and psoas major muscle showed dramatic changes for the cases of L5-S1 and L3-L5 level fusion. Muscle force change at each muscle also generated relatively high nucleus pressure not only at the adjacent level but at another level, which can explain disc degeneration pattern observed in clinical study.

Comparison of Lower Extremity Muscle Activity and Knee Joint Load according to Movement Speed Conditions during the Barbell Back Squat (바벨 백 스쿼트 시 운동 속도 조건에 따른 하지근 활성도 및 무릎 관절의 부하량 비교)

  • Moon-Seok Kwon;Jae-Woo Lee
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.1
    • /
    • pp.25-33
    • /
    • 2024
  • Objective: The purpose of this study was to compare the lower extremity muscle activity and knee joint load according to movement speed conditions during the barbell back squat. Method: Nine males with resistance training experience participated in this study. Participants performed the barbell back squat in three conditions (Standard, Fast, and Slow) differing movement speed. During the barbell back squat, muscle activity of the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris long head (BFL), semitendinosus (ST), gluteus maximus (GM), gastrocnemius (GCN), and tibialis anterior (TA) was collected using an 8 channel wireless EMG system. The peak flexion angle of the lower extremity joints and the peak resultant joint force in each direction of the knee joint were calculated using eight motion capture cameras and ground reaction force plates. This study was to used the Friedman test and the Wilcoxon signed rank test, to compare lower extremity muscle activity and peak resultant joint force at knee joint according to movement speed conditions during the barbell back squat, and the statistical significance level was set at .01. Results: In the downward phase of the barbell back squat, the RF and TA showed the higher muscle activity in the fast condition, and in the upward phase, RF, VL, VM, BFL, ST, GM, and TA showed the higher muscle activity in the fast condition. As a results, analyzing of the load on the knee joint, in the downward phase, and in the upward phase, the higher peak compressive force of the knee joint was showed in the fast condition. Conclusion: The barbell back squat with fast movement speed was more effective due to increased muscle activity of lower extremity, but one must be careful of knee joint injuries because the load on the knee joint may increase during the barbell back squat with fast movement speed.

Kinetic Differences between Normal-design Running Shoes and Spring-loaded Running Shoes (기능성 스프링신발과 일반운동화의 운동역학적 비교분석)

  • Lee, Chong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.581-592
    • /
    • 2009
  • The purpose of this study is to examine the effect of the functional shoes through the kinetic comparison of normal-design running shoes and spring-loaded running shoes. For this, 12 healthy females from the age from 30 to 40 years participated in the EMG and ground reaction force experiment with testing kinetic variables. 12 subjects walked at the velocity of 1.7m/s. After analyzing variables in the spring-loaded running shoes and normal-design running shoes, the following conclusions were obtained; For the ground reaction force, spring-loaded running shoes have larger antero-posterior GRF than normal-design running shoes in the first and second apexes of antero-posterior ground reaction force. For the analysis of EMG, spring-loaded running shoes showed the higher muscle activation of rectus femoris muscle than norma-design running shoes. So the spring-loaded running shoes help improvement muscle strength of knee extensor.

The Research for Using Method of GRF (Ground Reaction Force) on Rotational Movement in Arabesque (아라베스크 회전동작 시 지면반력 활용방법에 관한 연구)

  • Gwon, An-Suk;Lee, Geon-Beom
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.1-10
    • /
    • 2005
  • G. B. LEE, A. S. GWON, The Research for Using methodof GRF (Ground Reaction Force) on Rotational Movement in Arabesque. Korean Journal of Sport Biomechanics, Vol. 15, No. 2, pp.1-10, 2005. As, in relation to all movements of a human being, the movements such as mutually walking, running, rotating, and jumping are attained endlessly through the ground amid the interaction with the ground, in terms of the harmonious movement of the upper limbs and the lower limbs, related to the basic movement in ballet, the type of a movement depends on the size and direction of the force that presses down the ground (Fz, Fx, Fy) amid the interaction with the ground. Therefore, aiming to correctly and efficiently perform a rotational movement in Arabesque, this study analyzed factors of the force manifestation through GRF (Ground Reaction Force), by dividing into preparing, stepping, standing, rotating, and finishing stages (events (1) ${\sim}$ (5)), targeting the subjects of 4 elite female students who majored in ballet. 1. At the No.5 position of the preparing stage, It is necessary that support the ground with left and right foot balance, 2. As the stepping stage is the phase ranging from the event (2), in which a plie movement of bending a knee is started, to the event (3) of stretching a knee, Rebunding motion is not good, and One have a position with ankle and knee flextion condition in order to stretch strengthly in event (3) position 3. At the event (1) position, It is necessary that exert the Fz reaction force at the event (3) position. Because large stretch force help to have a toe on position easily and show a active motion 4. In order to have a stand and rotation motion smoothly, One need a muscle strength training for ankle extension, knee extension, control horizental force