• Title/Summary/Keyword: Muscle Fiber Type

Search Result 117, Processing Time 0.03 seconds

Effect of DHEA on Type I and II muscles in a focal cerebral ischemia model rat (DHEA 투여가 뇌허혈 유발 쥐의 Type I, II 근육에 미치는 효과)

  • An, Gyeong-Ju;Choe, Myoung-Ae
    • Journal of Korean Biological Nursing Science
    • /
    • v.4 no.2
    • /
    • pp.19-40
    • /
    • 2002
  • The purpose of this study was to determine the effect of DHEA on Type I(soleus) and II muscles(plantaris, gastrocnemius) in a focal brain ischemia model rat. Thirty-seven male Sprague-Dawley rats with $200{\sim}250g$ body weights were randomly divided into four groups : CINS(cerebral ischemia + normal saline), CIDH(cerebral ischemia + DHEA), SHNS(sham + normal saline), SHDH (sham + DHEA). Both the CINS and CIDH groups were undergone a transient right middle cerebral artery occlusion operation. In the SHNS and SHDH groups, a sham operation was done. DHEA was administered daily at a dose of 0.34mmol/kg, and normal saline was administered daily at the same dose by intraperitoneal injection for 7days after operation. Cerebral infarction in the CINS and CIDH groups was identified by staining with 2% triphenyltetrazolium chloride solution for 60 minutes. The data were analyzed by Kruskal-Wallis test and Mann-Whitney U test using the SPSSWIN 9.0 program. The results were summarized as follows: 1) The muscle weights of soleus(Type I), plantaris and gastrocnemius(Type II) in CINS group were significantly less than those of the SHNS group(p<.01). The muscle fiber cross-sectional area of the CINS group was significantly less than that of the SHNS group in Type I muscle fiber of the soleus and Type II muscle fiber of the plantaris and gastrocnemius(p<.05). The myofibrillar protein content of the CINS group was significantly less than that of the SHNS group in the left gastrocnemius and right soleus(p<.05). 2) The muscle weights of the soleus, plantaris and gastrocnemius except the unaffected side of the plantaris in the CIDH significantly increased compared to those of the CINS group(p<.05). The muscle fiber cross-sectional area of the CIDH group significantly increased compared to that of the CINS group in Type II muscle fiber of the plantaris and gastrocnemius(p<.05). The myofibrillar protein content of the CIDH group significantly increased compared to that of the CINS group in the left soleus(p<.05). 3) On the post-op 8 day, the body weight of the CINS group was significantly less than that of the CIDH, SHNS and SHDH groups(p<.01). Total diet intake of the CINS and CIDH groups was significantly less than that of the SHNS and SHDH groups(p<.01). Based on these results, it was identified that muscle atrophy could be induced during the 7 days after cerebral infarction, and DHEA administration during the early stage of cerebral infarction might attenuate muscle atrophy.

  • PDF

Comparison of Muscle Fiber and Meat Quality Characteristics in Different Japanese Quail Lines

  • Choi, Y.M.;Hwang, S.;Lee, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1331-1337
    • /
    • 2016
  • The aim of this study was to compare the growth performance, fiber characteristics of the pectoralis major muscle, and meat quality characteristics in the heavy weight (HW) and random bred control (RBC) quail lines and genders. The HW male exhibited more than two times greater body (245.7 vs 96.1 g, p<0.05) and pectoralis major muscle (PMW; 37.1 vs 11.1 g, p<0.05) weights compared to the RBC female. This growth performance in the HW line was associated with a greater muscle fiber area (1,502 vs $663.0{\mu}m^2$, p<0.001) compared to the RBC line. Greater muscle mass of the HW male was accompanied by a higher percentage of type IIB fiber compared to the HW female (64.0% vs 51.0%, p<0.05). However, muscle fiber hyperplasia (increase in fiber number) has had a somewhat limited effect on PMW between the two lines. On the other hand, the HW line harboring a higher proportion of type IIB fiber showed rapid pH decline at the early postmortem period (6.23 vs 6.41, p<0.05) and lighter meat surface (53.5 vs 47.3, p<0.05) compared to the RBC line harboring a lower proportion of type IIB fiber. There were no significant differences observed in the measurement of water-holding capacity including drip loss (2.74% vs 3.07%, p>0.05) and cooking loss (21.9% vs 20.4%, p>0.05) between the HW and RBC lines. Therefore, the HW quail line developed by selection from the RBC quail, was slightly different in the meat quality characteristics compared to the RBC line, and a marked difference was found in growth performance between the two quail lines.

Effects of Exercise on the Physiological Changes of Aging Skeletal Muscle (운동이 노화로 인한 골격근의 생리적 변화에 미치는 영향)

  • Song, Ju-Young;Kim, Jin-Sang
    • Physical Therapy Korea
    • /
    • v.5 no.1
    • /
    • pp.63-78
    • /
    • 1998
  • The decrease of muscle power and muscle size between twenties and seventies was about 30% and 40% respectively. The loss of muscle mass by aging resulted in the decrease of muscle power. The loss of muscle mass was due to the decrease of number of Type I fiber and Type II fiber and size of each muscle fiber. The aging skeletal muscle didn't show the loss of glycolysis capacity but showed 20% decrease of the oxidative enzymes and muscle vascularization. The vigorous endurance exercise training with graded intensity played a role in the vascular proliferation, increase of activity of oxidative enzymes and improvement of $VO_2$ max. The graded resistance exercise also played a role in the muscle hypertrophy and increase of muscle power, if it performed with adequate intensity and period. The exercise adaptation of aging skeletal muscle prevented it from sarcopenia, provided the activity of daily living with great effect and provided the aging related disease, that is Type II diabetes mellitus, arteriosclerosis, hypertension, osteoporosis and obesity, with great effect.

  • PDF

Relationships of Muscle Fiber Characteristics to Dietary Energy Density, Slaughter Weight, and Muscle Quality Traits in Finishing Pigs

  • Jeong, Jin-Yeon;Kim, Gap-Don;Ha, Duck-Min;Park, Man-Jong;Park, Byung-Chul;Joo, Seon-Tea;Lee, C.-Young
    • Journal of Animal Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.175-183
    • /
    • 2012
  • The present study was conducted to investigate the relationships of muscle fiber characteristics to dietary energy density [3.0(Low-E) vs. 3.2 (Med-E) Mcal DE/kg)] and slaughter weight [SW; 110, 125, and 138 kg] in finishing pigs (gilt vs. barrow) using a $2{\times}3{\times}2$ factorial treatment design. Forty-one longissimus dorsi muscle (LM) samples were analyzed histochemically, with growth performance and physicochemical data for the 41 animals and their LM out of 192 animals and 72 LM used in a previous study retrospectively included. The ADG was less (P<0.01) in the Low-E than in the Med-E group (0.93 vs. 0.73 kg) whereas lightness ($L^*$) and redness ($a^*$) of LM were greater in the Low-E group SW did not influence these variables. The diameter and perimeter of the type I (slow-oxidative), type IIA (fast oxido-glycolytic) and type IIB (fast glycolytic) fibers increased with increasing SW whereas densities of the fibers decreased. However, the number and area percentages of the fiber types were not influenced by SW or dietary energy density. The percentage and per-$mm^2$ density of type IIB fibers were negatively correlated with SW (r = -0.33 and -0.57, with P<0.05 and <0.01, respectively), whereas type I fiber number percentage was positively correlated with SW (r = 0.31; P<0.05). Marbling score was negatively correlated (P<0.05) with type I (r = -0.36) and type IIB (r = -0.39) fiber densities. The $a^*$ was correlated (P<0.01) with both type I and type IIB fiber number percentages in the opposite way (r = 0.42 and -0.47, respectively). However, $L^*$ (lightness), drip loss and $pH_{24h}$ were not correlated with the fiber number percentage or density of any fiber type. Collectively, results indicate that muscle fibers grow by hypertrophy during the late finishing period, but that fiber characteristics other than the size are not significantly influenced by dietary energy density or SW.

Effect of periodic weight support on Type I muscle of developing suspended rats. - Animal experiment for nursing inter- vention of muscle atrophy in children - (주기적인 체중지지가 발달중인 뒷다리부유쥐의 Type I 근육에 미치는 효과 -하지근 위축환아의 간호중재 개발을 위한 동물실험 -)

  • 최명애;지제근
    • Journal of Korean Academy of Nursing
    • /
    • v.23 no.2
    • /
    • pp.207-223
    • /
    • 1993
  • Inpatients are mostly occupied in bed with restricted activity, nearly all patient populations are at risk for the occurrence of skeletal muscle atrophy due to decreased level of activity. Restriction of mobility is far greater in pediatric patients compared with adult patients since almost all the activities of daily living is performed by parents or caregivers. It could be assumed that pediatric patients are more vulnerable to skeletal muscle atrophy than adult patients, however, there have been no attempts to reduce the atrophy of developing muscle. Therefore it is important to determine the effect of exercise in developing muscle during decreased activity. The purpose of this study was to determine the effect of periodic weight support during hindlimb suspension on the mass and cross-sectional area of Type I and II fibers in developing soleus(Type I ) muscle. To examine the effectiveness of periodic weight support activity in maintaining mass and fiber size. the hindlimb of young female Wistar rats was suspended(HS) and half of these rats walked on a treadmill for 45min / day(15min every 4h) at 5m / min at a 15 grade(HS-WS). After 7days of hindlimb suspension, soleus wet weight was 28. 57% smaller and relative soleus weight was 28. 21% smaller in comparison with con-trol rats (p〈0.05) Soleus wet weight and relative soleus weight increased by 67.72% and 71.43% each with periodic weight support activity during hindlimb suspension (p〈0.01, p〈0.005), moreover soleus wet weight and relative soleus weight of the HS -WS rats were greater than those of the control group. No change was observed in fiber type percentage of the developing soleus muscle after 1 week of hindlimb suspension plus weight support activity. Type I and II fiber cross-sectional areas of the developing soleus muscle were 50.45% and 43.39% lower in the HS group than in the control group (p〈0.0001), type I and II fiber cross-sectional areas of the developing soleus were 24.49% and 29.93% greater in the HS - WS group than in the HS rats (p〈0.0001), whereas Type I and II fiber cross-sectional areas of HS - WS group were less than those of the control group, The results suggest that periodic weight support activity can ameliorate developing soleus muscle atrophy induced by hindlimb suspension, even in type II fibers that would not have been expected to be recruited by this type of neuromuscular demand. Clinical experimental study is needed to deter-mine the effect of periodic weight bearing exercise on developing atrophied leg muscle based on these results.

  • PDF

Effects of Exercise before Steroid Treatment on Type I and Type II Hindlimb Muscles in a Rat Model (스테로이드치료 전 운동이 스테로이드 치료에 의해 유발된 쥐의 위축 Type I, II 뒷다리근육에 미치는 효과)

  • Choe, Myoung-Ae;An, Gyeong-Ju
    • Journal of Korean Academy of Nursing
    • /
    • v.37 no.1
    • /
    • pp.81-90
    • /
    • 2007
  • Purpose: The purpose of this study was to examine the effects of daily exercise before steroid treatment on mass, the type I and II fiber cross-sectional area, and myofibrillar protein content of hindlimb muscles in a rat model. Method: Adult male Sprague-Dawley rats were randomly assigned to one of three groups: a control group(n=10) that had a normal saline injection for 7days, a steroid group(n=10) that had a steroid injection for 7days, and an exercise-steroid group(n=10) that ran on the treadmill for 7days before a steroid treatment. Body weight and food intake were measured every day. At 15 days all rats were anesthetized and the soleus, plantaris and gastrocnemius muscles were dissected. Result: The exercise-steroid group showed significant increases as compared with the steroid group in body weight, muscle weight of the soleus and gastrocnemius, type II muscle fiber cross-sectional area of plantaris, and myofibrillar protein content of the soleus, plantaris, and gastrocnemius. As compared with the control group, the steroid group showed significant decreases in body weight and diet intake, muscle weight, the type II fiber cross-sectional area and myofibrillar protein content of the soleus, plantaris, and gastrocnemius muscles. Conclusion: Daily exercise before steroid treatment attenuates hindlimb muscle atrophy, with type II muscle changes more apparent than type I muscle changes.

Comparison of Characteristics of Myosin Heavy Chain-based Fiber and Meat Quality among Four Bovine Skeletal Muscles

  • Kim, Gap-Don;Yang, Han-Sul;Jeong, Jin-Yeon
    • Food Science of Animal Resources
    • /
    • v.36 no.6
    • /
    • pp.819-828
    • /
    • 2016
  • Muscle fiber characteristics account for meat quality and muscle fibers are mainly classified into three or more types according to their contractile and metabolic properties. However, the majority of previous studies on bovine skeletal muscle are based on myosin ATPase activity. In the present study, the differences in the characteristics of muscle fibers classified by the expression of myosin heavy chain (MHC) among four bovine skeletal muscles such as longissimus thoracis (LT), psoas major (PM), semimembranosus (SM) and semi-tendinosus (ST) and their relationships to beef quality were investigated. MHCs 2x, 2a and slow were identified by LC-MS/MS and IIX, IIA and I fiber types were classified. PM, which had the smallest size and highest density of fibers regardless of type, showed the highest myoglobin content, CIE $L^*$, $a^*$, $b^*$ and sarcomere length (p<0.05), whereas ST with the highest composition of IIX, showed high shear force and low sarcomere length (p<0.05). The correlation coefficients between muscle fiber characteristics and meat quality showed that type IIX is closely related to poor beef quality and that a high density of small-sized fibers is related to redness and tenderness. Therefore, the differences in meat quality between muscles can be explained by the differences in muscle fiber characteristics, and especially, the muscles with good quality are composed of more small-sized fibers regardless of fiber type.

Effect of Short-term Undernutrition on Hindlimb Muscles in Rats (단기간의 영양 섭취 저하가 쥐 뒷다리근에 미치는 영향)

  • Choe, Myoung-Ae;Lee, Kyoung-A;An, Gyeong-Ju
    • Journal of Korean Biological Nursing Science
    • /
    • v.13 no.2
    • /
    • pp.179-184
    • /
    • 2011
  • Purpose: The purpose of this study was to examine the effect of short-term undernutrition on muscle weight and Type I and II fiber cross-sectional area of hindlimb muscles in undernourished rats. Methods: Adult male Sprague-Dawley rats were randomly assigned to one of two groups: The undernourished (UN) group (n=9) and the control (C) group (n=9). A control group was allowed to have water and pellet ad libitum for 5 days. Undernutrition was induced by providing 32% of total intake of the control group for 5 days. Body weight of two groups and food intake of the control group were measured every day. At 6 days all rats were anesthetized and soleus, plantaris and gastrocnemius muscles, and liver were dissected. Body weight, food intake, muscle weight, liver weight and cross-sectional area were determined. Results: The UN group at 6 days after undernutrition showed significant decreases, as compared to the control group in body weight, liver weight, muscle weight of soleus, plantaris, and gastrocnemius, and Type I fiber cross-sectional area of soleus and gastrocnemius muscles and Type II fiber cross-sectional area of plantaris and gastrocnemius muscles. Conclusion: Hindlimb muscle atrophy occurs from the short-term undernutrition.

Muscle Fiber Characteristics on Chop Surface of Pork Loin (M. longissimus thoracis et lumborum) Associated with Muscle Fiber Pennation Angle and Their Relationships with Pork Loin Quality

  • Song, Sumin;Cheng, Huilin;Jung, Eun-Young;Joo, Seon-Tea;Kim, Gap-Don
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.957-968
    • /
    • 2020
  • The influence of muscle architecture on muscle fiber characteristics and meat quality has not been fully elucidated. In the present study, muscle fiber characteristics on the chop surface of pork loin (M. longissimus thoracis et lumborum, LTL), pennation angle degree, and meat quality were evaluated to understand the pork LTL architecture and its relationship with the loin chop quality. Muscle fiber pennation degree ranged from 51.33° to 69.00°, resulting in an ellipse-shaped muscle fiber on the surface of pork loin chop. The cross-sectional area (CSA) on the sections cut vertical to the muscle length (M-Vertical) was considerably larger (p<0.05) than that on the sections cut vertical to the muscle fiber orientation (F-Vertical) regardless of the fiber type. Pennation angle is positively correlated with CSAs of F-Vertical (p<0.05) and with Warner-Bratzler shear force (r=0.53, p<0.01). Besides the shear force, lightness and pH were positively correlated with the fiber composition and CSA of IIX fiber (p<0.05); however, the redness, yellowness, drip loss, and cooking loss were not correlated with the pennation angle and muscle fiber characteristics on the chop surface (p>0.05). These observations might help us in better understanding pork loin architecture and the relationship between the pennation angle, muscle fiber characteristics, and meat quality of pork loin chop.

Effects of Isometric Contraction Training by Electrostimulation on Type I and II Hindlimb Muscles in Cerebral Ischemia Model Rats (전기자극을 이용한 등척성 수축훈련이 뇌허혈 유발 쥐의 환측 Type I, II 근육에 미치는 영향)

  • Lee, Yoon-Kyong;Choe, Myoung-Ae;An, Gyeong-Ju
    • Journal of Korean Academy of Nursing
    • /
    • v.36 no.7
    • /
    • pp.1232-1241
    • /
    • 2006
  • Purpose: The purpose of this study was to examine the effects of cerebral ischemia on Type I(soleus) and Type II(plantaris, gastrocnemius) muscles, and to determine the effects of isometric contraction training by electro- stimulation on Type I and II muscles in cerebral ischemia model rats. Method: Twenty-five male Sprague-Dawley rats were randomly divided into four groups: ST(stroke), STES(stroke+electrostimulation), SH(sham) and SHES (sham+electrostimulation). The ST and STES groups received a transient right middle cerebral artery occlusion operation. The SH and SHES groups received a sham operation. The STES and SHES groups had daily isometric contraction training by electrostimulation(100Hz, 45mA, 7.5V) on hindlimb muscles for 7days. Result: Plantaris and gastrocenmius muscle weight, myofibrillar protein contents of soleus and gastrocnemius, and the muscle fiber cross-sectional area of gastrocnemius in the ST group significantly decreased compared with the SH group. Soleus, plantaris, gastrocnemius muscle weight, myofibrillar protein contents of soleus and gastrocnemius, and the Type I muscle fiber cross-sectional area of soleus and the Type II muscle fiber cross-sectional area of gastrocnemius in the STES group significantly increased compared with the 57 group. Conclusion: Hindlimb muscle atrophy occurs after acute stroke and isometric contraction training by electrostimulation during early stages of a stroke attenuates muscle atrophy of Type I and Type II muscles.