• Title/Summary/Keyword: Muscarinic receptor

Search Result 165, Processing Time 0.028 seconds

Antipsychotics for patients with pain

  • Shin, Sang Wook;Lee, Jin Seong;Abdi, Salahadin;Lee, Su Jung;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.32 no.1
    • /
    • pp.3-11
    • /
    • 2019
  • Going back to basics prior to mentioning the use of antipsychotics in patients with pain, the International Association for the Study of Pain (IASP) definition of pain can be summarized as an unpleasant experience, composed of sensory experience caused by actual tissue damage and/or emotional experience caused by potential tissue damage. Less used than antidepressants, antipsychotics have also been used for treating this unpleasant experience as adjuvant analgesics without sufficient evidence from research. Because recently developed atypical antipsychotics reduce the adverse reactions of extrapyramidal symptoms, such as acute dystonia, pseudo-parkinsonism, akathisia, and tardive dyskinesia caused by typical antipsychotics, they are expected to be used more frequently in various painful conditions, while increasing the risk of metabolic syndromes (weight gain, diabetes, and dyslipidemia). Various antipsychotics have different neurotransmitter receptor affinities for dopamine (D), 5-hydroxytryptamine (5-HT), adrenergic (${\alpha}$), histamine (H), and muscarinic (M) receptors. Atypical antipsychotics antagonize transient, weak $D_2$ receptor bindings with strong binding to the $5-HT_{2A}$ receptor, while typical antipsychotics block long-lasting, tight $D_2$ receptor binding. On the contrary, antidepressants in the field of pain management also block the reuptake of similar receptors, mainly on the 5-HT and, next, on the norepinephrine, but rarely on the D receptors. Antipsychotics have been used for treating positive symptoms, such as delusion, hallucination, disorganized thought and behavior, perception disturbance, and inappropriate emotion, rather than the negative, cognitive, and affective symptoms of psychosis. Therefore, an antipsychotic may be prescribed in pain patients with positive symptoms of psychosis during or after controlling all sensory components.

Characterization of the drug receptors responsible for intestinal contraction in Israeli carp (이스라엘잉어 장관 수축에 관여하는 약물수용체에 관한 연구)

  • Yun, Hyo-in;Han, Kyong-oh;Park, Seung-chun;Cho, Joon-hyoung;Oh, Tae-kwang
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.3
    • /
    • pp.447-456
    • /
    • 1994
  • In order to elucidate the characterization of receptors involved in inestinal motility of Israeli carp, spontaneously contracting Israeli carp intestinal preperations were prepared and mounted in the organ chambers for contraction traicings using a polygraph. Various contractile agonists were treated and their dose-response curves were constructed. $EC_{50}$ values$(pD_2)$ of each agonist on specific receptors, $pA_2$ values of competitive antagonists against some agonists, and $K_1$, values of noncompetitive antagonists against some agonists were analyzed for characterization of receptors related with the intestinal contraction. Results obtained through the experiments were summarized as follows: 1. Acetylcholine(ACh) exhibited biphasic dose-response curves: initial ACh-induced dose dependent contractions were observed in pM levels but followed by decreased response in in-between concentration levels. Dose dependent contractions reappeared in ${\mu}M$ level. The peaks in pM and ${\mu}M$ levels appeared in $10^{-13}M$ and $3{\times}10^{-5}M$, respectvely. 2. Carbachol(CaCh) exhibited dose dependent contractions from $10^{-9}M$ to $10^{-5}M$, and its $pD_2$ values were higher than those of ACh($5.60{\pm}0.11$). ACh and CaCh exhibited equiactive contractions. Nicotine had no effects on contractile responses of Israeli carp intestine. 3. ACh-induced responses were inhibited by atropine($K_1:7{\times}10^{-8}M$), a muscarinic antagonist, in a non-competitive manner. But CaCh-induced responses were inhibited by both antimuscarinic atropine($pA_2:9.52{\pm}0.14$) and selective $M_2$ antagonistic 4-DAMP($pA_2:8.16{\pm}0.09$), in competitive manners. Nicotine receptor antagonistic decamethonium and hexamethonium had no effects on ACh-and CaCh-induced contractions. Therefore, the cholinergic receptor related to intestinal motility of Israeli carp was assumed as $M_2$ type. 4. In Israeli carp intestine, 5-HT (serotonin) exhibited dose dependent contractions in concentration range from $10^{-8}M$ to $10^{-5}M$. The maximal responses, however, were corresponded to about 50% of those of ACh or CaCh. 5-HT induced contractions were inhibited by $5-HT_2$ antagonistic ketanserin ($K_1: 7.8{\times}10^{-4}M$) in a non-competitive manner, but not by both of anti $5-HT_1$, spiperone and anti $5-HT_3$, MDL-72222. Hence, $5-HT_2$ receptors are suggested to be existed in Isreli carp intestine.

  • PDF

Inhibitory Effects of Total Ginseng Saponin on Catecholamine Secretion from the Perfused Adrenal Medulla of SHRs

  • Jang, Seok-Jeong;Lim, Hyo-Jeong;Lim, Dong-Yoon
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.176-190
    • /
    • 2011
  • There seems to be some controversy about the effect of total ginseng saponin (TGS) on the secretion of catecholamines (CA) from the adrenal gland. Therefore, the present study aimed to determine whether TGS can affect the CA release in the perfused model of the adrenal medulla isolated from spontaneously hypertensive rats (SHRs). TGS (15-150 ${\mu}g/mL$), perfused into an adrenal vein for 90 min, inhibited the CA secretory responses evoked by acetylcholine (ACh, 5.32 mM) and high $K^+$ (56 mM, a direct membrane depolarizer) in a dose- and time-dependent fashion. TGS (50 ${\mu}g/mL$) also time-dependently inhibited the CA secretion evoked by 1.1-dimethyl-4 -phenyl piperazinium iodide (DMPP; 100 ${\mu}M$, a selective neuronal nicotinic receptor agonist) and McN-A-343 (100 ${\mu}M$, a selective muscarinic M1 receptor agonist). TGS itself did not affect basal CA secretion (data not shown). Also, in the presence of TGS (50 ${\mu}g/mL$), the secretory responses of CA evoked by veratridine (a selective $Na^+$ channel activator (50 ${\mu}M$), Bay-K-8644 (an L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}M$) were significantly reduced, respectively. Interestingly, in the simultaneous presence of TGS (50 ${\mu}g/mL$) and N${\omega}$-nitro-L-arginine methyl ester hydrochloride [an inhibitor of nitric oxide (NO) synthase, 30 ${\mu}M$], the inhibitory responses of TGS on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid, and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory effect of TGS-treatment alone. Practically, the level of NO released from adrenal medulla after the treatment of TGS (150 ${\mu}g/mL$) was greatly elevated compared to the corresponding basal released level. Taken together, these results demonstrate that TGS inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the isolated perfused adrenal medulla of the SHRs. It seems that this inhibitory effect of TGS is mediated by inhibiting both the influx of $Ca^{2+}$ and Na+ into the adrenomedullary chromaffin cells and also by suppressing the release of $Ca^{2+}$ from the cytoplasmic calcium store, at least partly through the increased NO production due to the activation of nitric oxide synthase, which is relevant to neuronal nicotinic receptor blockade, without the enhancement effect on the CA release. Based on these effects, it is also thought that there are some species differences in the adrenomedullary CA secretion between the rabbit and SHR.

Englerin A-sensing charged residues for transient receptor potential canonical 5 channel activation

  • Jeong, SeungJoo;Ko, Juyeon;Kim, Minji;Park, Ki Chul;Park, Eunice Yon June;Kim, Jinsung;Baik, Youngjoo;Wie, Jinhong;Cho, Art E.;Jeon, Ju-hong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.3
    • /
    • pp.191-201
    • /
    • 2019
  • The transient receptor potential canonical (TRPC) 5 channel, known as a nonselective cation channel, has a crucial role in calcium influx. TRPC5 has been reported to be activated by muscarinic receptor activation and extracellular pH change and inhibited by the protein kinase C pathway. Recent studies have also suggested that TRPC5 is extracellularly activated by englerin A (EA), but the mechanism remains unclear. The purpose of this study is to identify the EA-interaction sites in TRPC5 and thereby clarify the mechanism of TRPC5 activation. TRPC5 channels are over-expressed in human embryonic kidney (HEK293) cells. TRPC5 mutants were generated by site-directed mutagenesis. The whole-cell patch-clamp configuration was used to record TRPC5 currents. Western analysis was also performed to observe the expression of TRPC5 mutants. To identify the EA-interaction site in TRPC5, we first generated pore mutants. When screening the mutants with EA, we observed the EA-induced current increases of TRPC5 abolished in K554N, H594N, and E598Q mutants. The current increases of other mutants were reduced in different levels. We also examined the functional intactness of the mutants that had no effect by EA with TRPC5 agonists, such as carbachol or $GTP{\gamma}S$. Our results suggest that the three residues, Lys-554, His-594, and Glu-598, in TRPC5 might be responsible for direct interaction with EA, inducing the channel activation. We also suggest that although other pore residues are not critical, they could partly contribute to the EA-induced channel activation.

Assessment of antinociceptive property of Cynara scolymus L. and possible mechanism of action in the formalin and writhing models of nociception in mice

  • Pegah Yaghooti;Samad Alimoahmmadi
    • The Korean Journal of Pain
    • /
    • v.37 no.3
    • /
    • pp.218-232
    • /
    • 2024
  • Background: Cynara scolymus has bioactive constituents and has been used for therapeutic actions. The present study was undertaken to investigate the mechanisms underlying pain-relieving effects of the hydroethanolic extract of C. scolymus (HECS). Methods: The antinociceptive activity of HECS was assessed through formalin and acetic acid-induced writhing tests at doses of 50, 100 and 200 mg/kg intraperitoneally. Additionally, naloxone (non-selective opioid receptors antagonist, 2 mg/kg), atropine (non-selective muscarinic receptors antagonist, 1 mg/kg), chlorpheniramine (histamine H1-receptor antagonist, 20 mg/kg), cimetidine (histamine H2-receptor antagonist, 12.5 mg/kg), flumazenil (GABAA/BDZ receptor antagonist, 5 mg/kg) and cyproheptadine (serotonin receptor antagonist, 4 mg/kg) were used to determine the systems implicated in HECS-induced analgesia. Impact of HECS on locomotor activity was executed by open-field test. Determination of total phenolic content (TPC) and total flavonoid content (TFC) was done. Evaluation of antioxidant activity was conducted employing 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Results: HECS (50, 100 and 200 mg/kg) significantly indicated dose dependent antinociceptive activity against pain-related behavior induced by formalin and acetic acid (P < 0.001). Pretreatment with naloxone, atropine and flumazenil significantly reversed HECS-induced analgesia. Antinociceptive effect of HECS remained unaffected by chlorpheniramine, cimetidine and cyproheptadine. Locomotor activity was not affected by HECS. TPC and TFC of HECS were 59.49 ± 5.57 mgGAE/g dry extract and 93.39 ± 17.16 mgRE/g dry extract, respectively. DPPH free radical scavenging activity (IC50) of HECS was 161.32 ± 0.03 ㎍/mL. Conclusions: HECS possesses antinociceptive activity which is mediated via opioidergic, cholinergic and GABAergic pathways.

Role of Regulators of G-Protein Signaling 4 in $Ca^{2+}$ Signaling in Mouse Pancreatic Acinar Cells

  • Park, Soon-Hong;Lee, Syng-Ill;Shin, Dong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.383-388
    • /
    • 2011
  • Regulators of G-protein signaling (RGS) proteins are regulators of $Ca^{2+}$ signaling that accelerate the GTPase activity of the G-protein ${\alpha}$ -subunit. RGS1, RGS2, RGS4, and RGS16 are expressed in the pancreas, and RGS2 regulates G-protein coupled receptor (GPCR)-induced $Ca^{2+}$ oscillations. However, the role of RGS4 in $Ca^{2+}$ signaling in pancreatic acinar cells is unknown. In this study, we investigated the mechanism of GPCR-induced $Ca^{2+}$ signaling in pancreatic acinar cells derived from $RGS4^{-/-}$ mice. $RGS4^{-/-}$ acinar cells showed an enhanced stimulus intensity response to a muscarinic receptor agonist in pancreatic acinar cells. Moreover, deletion of RGS4 increased the frequency of $Ca^{2+}$ oscillations. $RGS4^{-/-}$ cells also showed increased expression of sarco/endoplasmic reticulum $Ca^{2+}$ ATPase type 2. However, there were no significant alterations, such as $Ca^{2+}$ signaling in treated high dose of agonist and its related amylase secretion activity, in acinar cells from $RGS4^{-/-}$ mice. These results indicate that RGS4 protein regulates $Ca^{2+}$ signaling in mouse pancreatic acinar cells.

Effect of Samryungbaikchul-san on Astrocyte Activation and Apoptosis in Mouse Model of Alzheimer Disease (삼령백출산(蔘笭白朮散)이 Alzheimer's Disease 동물모델의 Astrocyte 활성화 및 Apoptosis에 미치는 영향)

  • Lee, Sang-Ryong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.374-380
    • /
    • 2009
  • Samryungbaikchul-san(SRBCS) has been used in oriental medicine for the treatments of gastrointestinal and neurological disorders. Here, potential protective function of SRBCS was investigated in neural tissues in Alzheimer's disease(AD) mouse model. In primary cultured cells from the spinal cord of newborn rats, treatment of ${\beta}$-amyloid peptide elevated cell counts positive to glial fibrillary acidic protein(GFAP) or caspase 3 immunoreactivity, but the co-treatment of SRBCS reduced positive cell counts. In vivo administration of scopolamine, an inhibitor of muscarinic receptor, resulted in increases in the number of glial fibrillary acidic protein(GFAP) and caspase 3-positive cells in hippocampal subfields, which was then decreased by the treatment of SRBCS or acetylcholinesterase inhibitor galathamine. The present data suggest that SRBCS may play a protective role in damaged neural tissues caused by scopolamine treatments in mice.

Reduction of Muscarinic $K^+$ Channel Activity by Transferrin in Ischemic Rat Atrial Myocytes

  • Park, Kyeong-Tae;Kang, Da-Won;Han, Jae-Hee;Hur, Chang-Gi;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.333-339
    • /
    • 2003
  • It has been demonstrated that an unidentified cytosolic factor(s) reduces $K_{ACh}$ channel function. Therefore, this study attempted to elucidate the cytosolic factor. Fresh cytosol isolated from normal heart (FC) depressed the $K_{ACh}$ channel activity, but cytosol isolated from the ischemic hearts (IC) did not modulate the channel function. Electrophorectic analysis revealed that a protein of ${\sim}80 kDa was markedly reduced or even lost in IC. By using peptide sequencing analysis and Western blot, this 80 kDa protein was identified as transferrin (receptor-mediated $Fe^{3+}$ transporter, 76 kDa). Direct application of transferrin (100 nM) to the cytoplasmic side of inside-out patches decreased the open probability ($P_o$, 12.7${\pm}6.4%, n=4) without change in mean open time (${\tau}_o$, $98.5{\pm}1.3$%, n=4). However, the equimolar apotransferrin, which is free of $Fe^{3+}$, had no effect on the channel activity (N*$P_o$, $129.1{\pm}13.5$%, n=3). Directly applied $Fe^{3+}$ (100 nM) showed results similar to those of transferrin (N*$P_o$: $21.1{\pm}3.9$%, n=5). However $Fe^{2+}$ failed to reduce the channel function (N*$P_o$, $106.3{\pm}26.8$%, n=5). Interestingly, trivalent cation La3+ inhibited N*$P_o$ of the channel ($6.1{\pm}3.0$%, n=3). Taken together, these results suggest that $Fe^{3+}$ bound to transferrin can modulate the $K_{ACh}$ channel function by its electrical property as a polyvalent cation.

Cholinergic Contraction to the Perivascular Nerve Stimulation on the Isolated Coronary Artery of Pig (돼지 적출 심장 관상동맥에 있어서 Perivascular Nerve Stimulation에 의한 Cholinergic 수축 작용)

  • Lee, Han-Ki;Goo, Bong-Oh;Moon, Sang-Eun;Shim, Chul-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.61-71
    • /
    • 2001
  • The purpose oi this study is to identify clearly the physiologic significance of autonomic nervous system. This study is to find the loose of endogenous neurotransmitter while using the neural response of the neural excitatory action which is distributed to the perivascular smooth muscle through the electrical stimulation of the smooth muscle of coronary artery of pig. The effects of perivascular nerve stimulation were investigated on isolated coronary artery of pig.1 . The magnitude of contractile response to perivascular nerve stimulation increased with increasing frequency (2-80 Hz) of stimulation. 2. The contractions to perivascular nerve stimulation(40V, 40Hz. 0.5msec, 1 min) were increased greatly by pretreatment of the cholinestrase inhibitor physostigmine. 3. The contraction to perivascular nerve stimulation(40V,40Hz, 0.5msec, 1min) was antagonised markedly by the muscarinic antagonist atropine. 4. The contraction to perivascular nerve stimulation(40V, 40Hz, 0.5msec, 1 min) was blocked by the neural blocker tetrodotoxin. 5. The contractions to perivascular nerve stimulation(40V. 40Hz, 0.5msec, 1 min) were not affected significantly by the -adrenergic antagonist phentolamine or - adrenergic antagonist propranolol. 6. The contractile response by the acetylcholine was increased by the pretreatment of cholinestrase inhibitor physostigmine. The finding suggest that it is powerful excitatory action linked to muscarinic receptor by cholinergic nerve in coronary artery of pig.

  • PDF

Inhibitory Effect of Caffeine on Carbachol-Induced Nonselective Cationic Current in Guinea-Pig Gastric Myocytes

  • Kim, Sung-Joon;Min, Kyung-Wan;Kim, Young-Chul;Lee, Sang-Jin;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.353-359
    • /
    • 1998
  • In gastrointestinal smooth muscle, muscarinic stimulation by carbachol (CCh) activates nonselective cation channel current ($I_{CCh}$) which is facilitated by intracellular [$Ca^{2+}$] increase. Caffeine is widely used in experiments to mobilize $Ca^{2+}$ from intracellular stores. This study shows a strong inhibitory effect of caffeine on $I_{CCh}$ in guinea-pig gastric myocyte. In this study, the underlying mechanism of the inhibitory effect of caffeine was investigated. $I_{CCh}$ was completely suppressed by the addition of caffeine (10 mM) to the superfusing solution. Inhibition of $I_{CCh}$ by caffeine was not related to the intracellular cAMP accumulation which was expected from the phosphodiesterase-inhibiting effect of caffeine. The blockade of $InsP_3-induced$ $Ca^{2+}$ release by heparin had no significant effects on the activation of $I_{CCh}$. When the same cationic current had been induced by intracellular dialysis of $GTP[{\gamma}S]$ in order to bypass the muscarinic receptor, the inhibitory effect of caffeine was significantly attenuated. The results of this study indicate that both intracellular signalling pathways for $I_{CCh}$, proximal and distal to G-protein activation, are suppressed by caffeine. A major inhibition was observed at the proximal level.

  • PDF