• Title/Summary/Keyword: Municipal wastewater

Search Result 297, Processing Time 0.024 seconds

The Nitrogen Removal of Municipal Wastewater with HRT using CNR Process (CNR공법의 체류시간에 따른 도시하수의 질소제거)

  • 김영규;양익배;김인배
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.98-102
    • /
    • 2000
  • The aim of this study was to evaluate on the removal effect of total nitrogen in municipal wastewater by decreasing hydraulic retention time(HRT) from 6 hour to 4 hour on CNR process. CNR-A(Cilia Nutrient Removal) is the process combining A2/O process with cilium media of H2L corporation. The removal efficiencies for T-N were 63.1% in A-1 reactor, and 73.5% in A-2 reactor and 77.0% in A-3 reactor. The specific nitrification(g-NH3-N/g-MLVSS.d) of Oxic in CNR-A process was 0.07-0.32. The specific denitrification in Anoxic and the specific nitrification inOxic was higher in HRT 4 hour because of optimum F/M ratio.

  • PDF

In-Depth Characterization of Wastewater Bacterial Community in Response to Algal Growth Using Pyrosequencing

  • Lee, Jangho;Lee, Juyoun;Lee, Tae Kwon;Woo, Sung-Geun;Baek, Gyu Seok;Park, Joonhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1472-1477
    • /
    • 2013
  • Microalgae have been regarded as a natural resource for sustainable materials and fuels, as well as for removal of nutrients and micropollutants from wastewater, and their interaction with bacteria in wastewater is a critical factor to consider because of the microbial diversity and complexity in a variety of wastewater conditions. Despite their importance, very little is known about the ecological interactions between algae and bacteria in a wastewater environment. In this study, we characterized the wastewater bacterial community in response to the growth of a Selenastrum gracile UTEX 325 population in a real municipal wastewater environment. The Roche 454 GS-FLX Titanium pyrosequencing technique was used for indepth analysis of amplicons of 16S rRNA genes from different conditions in each reactor, with and without the algal population. The algal growth reduced the bacterial diversity and affected the bacterial community structure in the wastewater. The following in-depth analysis of the deep-sequenced amplicons showed that the algal growth selectively stimulated Sphingobacteria class members, especially the Sediminibacterium genus population, in the municipal wastewater environment.

The Characteristics of Municipal wastewater Sludge Dewatering Using Oyster Shell Powder (굴껍질을 이용한 하수슬러지의 탈수특성에 관한 기초연구)

  • 신남철;문종익;정유진;장혜정;성낙창
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.2
    • /
    • pp.30-33
    • /
    • 2000
  • The objective of this study is to examine the subsitiution effect of the waste oyster shell powder as the conditioning agent in municipal wasterwater sludge dewatering process. Beacuse the oyster shells have a large amount(about 38% by weight) of alkaline minerals, such as calcium and magnesium, they are thought to have the potential as a good conditioning agent. In this study, the physico-chemical properties of powdered oyster shells (75${\mu}{\textrm}{m}$ or 200 mesh) and the dewatering characteristics of municipal waste water sludge using powdered oyster shells and CaCO3 are investigated. The conclusions are as follows, 1. Oyster shell could produce calcium ions up to 14ppm at pH-7.0, and this represents that oyster shell is a potential properties as a good conditioner. 2. 100ml of wastewater sludges, conditioned with pretreated oyster shell, are dewatered to the level of 25% solid concentration. 3. Wasterwater sludges, conditioned with oyster shell and CaCO3 are dewatered to the level of 32% solid concentration. And this shows that two-stage combined conditioning process is desirable than the one-stage conditioning process.

  • PDF

The Nitrogen and Phosphorus Removal of MUNR Process Using Sludge Carbon Source (초음파처리 슬러지 탄소원을 첨가한 침지헝 분리막공법의 질소, 인 처리에 관한 연구)

  • 김영규;황성희
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.1-3
    • /
    • 2002
  • This study was to evaluate on the removal efficiencies of total nitrogen and phosphorus in municipal wastewater at MUNR process using sludge carbon source for environmental micro-organism. The removal efficiencies of total suspended solid were 85.9~91%, total nitrogen were 38.6~87.2% and total phosphorus were 30.8~39.0%, respectively. It was shown that removal efficiency of nitrogen was effectively influenced by sludge carbon source treated with ultrasonication. The removal efficiency of total phosphorus was low because the sludge was not wasted during this treatment.

Development on the Process for Nitrogen and Phosphorus Removal in Municipal Wastewater Treatment System

  • Kim, Young-Gyu
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.144-146
    • /
    • 2003
  • The removal effect of total nitrogen in municipal wastewater by decreasing hydraulic retention time(HRT) from 6 hour to 4 hour on MNR process was not decreased.. The removal efficiencies of nutrient removal process combining A2/O process with media for T-N were 63.1% in the reactor operated 6 hour, and 73.5% in the reactor operated 5 hour and 77.0% in the reactor operated 4 hour.

  • PDF

Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond (미세조류 옥외 배양시스템을 이용한 도시하수 정화 및 미생물 군집다양성 분석)

  • Kang, Zion;Kim, Byung-Hyuk;Shin, Sang-Yoon;Oh, Hee-Mock;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 2012
  • Microalgal biotechnology has gained prominence because of the ability of microalgae to produce value-added products including biodiesel through photosynthesis. However, carbon and nutrient source is often a limiting factor for microalgal growth leading to higher input costs for sufficient biomass production. Use of municipal wastewater as a low cost alternative to grow microalgae as well as to treat the same has been demonstrated in this study using mini raceway open ponds. Municipal wastewater was collected after primary treatment and microalgae indigenous in the wastewater were encouraged to grow in open raceways under optimum conditions. The mean removal efficiencies of TN, TP, COD-$_{Mn}$, $NH_3$-N after 6 days of retention time was 80.18%, 63.56%, 76.34%, and 96.74% respectively. The 18S rRNA gene analysis of the community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. In addition, 16S rRNA gene analysis demonstrated that Rhodobacter, Luteimonas, Porphyrobacter, Agrobacterium, and Thauera were present along with the microalgae. From these results, it is concluded that microalgae could be used to effectively treat municipal wastewater without aerobic treatment, which incurs additional energy costs. In addition, municipal wastewater shall also serve as an excellent carbon and nitrogen source for microalgal growth. Moreover, the microalgal biomass shall be utilized for commercial purposes.

Nitrification and Removal of Pathogenic Microorganisms Indicators by an upgraded RBC (생물막공정을 이용한 질산화 및 병원성 미생물의 제거)

  • Bang, Du-Yeon;Chang, In-Soo;Kim, Jee-Hak;Watanabe, Yosimasa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.108-114
    • /
    • 1998
  • Experiments on an upgraded RBC were conducted to investigate its removal efficiencies of $NH_4-N$, coliform group and coliphage in the municipal wastewater treatment. A bench scale RBC, made of stainless mesh media with 5mm high surface protrusions, was fed with settled municipal wastewater containing 13-25mg/l of $NH_4-N$ and 40-75mg/l of TOC at the hydraulic loading of $89l/m^2.d$ and $60l/m^2.d$. It was found that the nitrification effectively occured at bulk liquid TOC concentration of less 10mg/l. The coliform group and coliphage were more than 98% and 90%, respectively.

  • PDF

Nutrient Removal and Biofuel Production in High Rate Algal Pond Using Real Municipal Wastewater

  • Kim, Byung-Hyuk;Kang, Zion;Ramanan, Rishiram;Choi, Jong-Eun;Cho, Dae-Hyun;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1123-1132
    • /
    • 2014
  • This study evaluated the growth and nutrient removal ability of an indigenous algal consortium on real untreated municipal wastewater in a high rate algal pond (HRAP). The HRAP was operated semicontinuously under different hydraulic retention times (HRT: 2, 4, 6, and 8 days). The average removal efficiencies of chemical oxygen demand, and total nitrogen and phosphate of real municipal wastewater were maintained at $85.44{\pm}5.10%$, $92.74{\pm}5.82%$, and $82.85{\pm}8.63%$, respectively, in 2 day HRT. Algae dominated the consortium and showed high settling efficiency (99%), and biomass and lipid productivity of $0.50{\pm}0.03g/l/day$ and $0.103{\pm}0.0083g/l/day$ (2day HRT), respectively. Fatty acid methyl ester analysis revealed a predominance of palmitate (C16:0), palmitoleate (C16:1), linoleate (C18:2), and linolenate (C18:3). Microalgal diversity analyses determined the presence of Chlorella, Scenedesmus, and Stigeoclonium as the dominant microalgae. The algal consortium provides significant value not only in terms of energy savings and nutrient removal but also because of its bioenergy potential as indicated by the lipid content (20-23%) and FAME profiling.