• Title/Summary/Keyword: Municipal

Search Result 1,669, Processing Time 0.027 seconds

A study on the physico-chemical characteristics of municipal solid wastes generated in the sunchon city (순천시 생활쓰레기의 계절별 조성 및 물리·화학적 특성에 관한 연구)

  • Hu, Kwan;Ko, Oh-Suk;Wang, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.105-110
    • /
    • 2001
  • To provide successful treatment policy and to apply sources for establishing plan, municipal solid wastes quantity was investigated as physical and chemical characteristics from Sunchon city. Results are like following after checking out characteristics by seasons, type. The average specific weight of municipal solid wastes is $219kg/m^3$ for combustible wastes, $391kg/m^3$ for non-combustible. Food wastes of combustible wastes contained moisture of 38.1% as standard of moisture weight per real weight, 49.6% moisture is contained in non-combustible wastes except food wastes moisture. Moisture, volatile and ash are contented by 16.9%, 68.1% and 15.0% in combustible wastes except food wastes. That means combustible wastes are available a refuse incineration. The low calorific value of only combustible waste is 2,962kca1/kg that is good for refuse incineration.

  • PDF

Nutrient Removal and Biofuel Production in High Rate Algal Pond Using Real Municipal Wastewater

  • Kim, Byung-Hyuk;Kang, Zion;Ramanan, Rishiram;Choi, Jong-Eun;Cho, Dae-Hyun;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1123-1132
    • /
    • 2014
  • This study evaluated the growth and nutrient removal ability of an indigenous algal consortium on real untreated municipal wastewater in a high rate algal pond (HRAP). The HRAP was operated semicontinuously under different hydraulic retention times (HRT: 2, 4, 6, and 8 days). The average removal efficiencies of chemical oxygen demand, and total nitrogen and phosphate of real municipal wastewater were maintained at $85.44{\pm}5.10%$, $92.74{\pm}5.82%$, and $82.85{\pm}8.63%$, respectively, in 2 day HRT. Algae dominated the consortium and showed high settling efficiency (99%), and biomass and lipid productivity of $0.50{\pm}0.03g/l/day$ and $0.103{\pm}0.0083g/l/day$ (2day HRT), respectively. Fatty acid methyl ester analysis revealed a predominance of palmitate (C16:0), palmitoleate (C16:1), linoleate (C18:2), and linolenate (C18:3). Microalgal diversity analyses determined the presence of Chlorella, Scenedesmus, and Stigeoclonium as the dominant microalgae. The algal consortium provides significant value not only in terms of energy savings and nutrient removal but also because of its bioenergy potential as indicated by the lipid content (20-23%) and FAME profiling.

A Study on Quantitative Supply of Sewage Sludge for Co-Incineration of Municipal Solid Waste and Sewage Sludge (하수슬러지와 생활폐기물 혼합소각시 하수슬러지 정량공급에 관한 연구 - Batch Test 중심으로)

  • Cho, Jae-Beom;Kim, Woo-Gu;Yeon, Kyeong-Ho;Shin, Jung-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.64-69
    • /
    • 2013
  • The various promotion countermeasures such as solidification, carbonization, and the creation of cement materials have been considered to existing treatment methods such as incineration and the creation of composts, since direct landfill was prohibited for encouraging the recycling based on the sludge treatment on land. The Main objective of this study is to investigate the feasibility of co-incineration for MSW (municipal solid waste) and SS (sewage sludge) through the quantitative supply of sewage sludge. In this study, optimum water content to operate normally incinerator is 85%. In order to increase the workability of sewage sludge, it is necessary to supply properly water. In the case study of sites, optimum water content is 87% due to the water evaporation. Therefore, it was found that the water content up to 87% would be reached the stable operation of co-incinerator on the mixture of municipal waste solid and sewage sludge.

Status, Trend and Strategy on Municipal Wastewater Management in China

  • Wang, Baozhen;Wang, Lin;Liu, Shuo;Wang, Li;Wang, Zheng
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.47-60
    • /
    • 2007
  • The rapid development of economy in China at the expense of consuming huge amount of energy and resources, water resource in particular, which has resulted in the production and discharge of increasing amount of wastewater to the water environment. In order to effectively control the increasing water pollution trend, the State Council has stipulated that all the cities with population over 500,000 should reach wastewater treatment rate of 60% by 2005, and all the cities should reach the rate of 60% by 2010, of which Capital Beijing and all the province capital cities and important tourism cities should reach 70% then. By the end of 2005, of the 661 cities in China, 393 have built and operated municipal wastewater treatments with a total number of 790 sets, total treatment capacity of $80.91{\times}106m^3/d$ and total treatment rate of > 48%. Other 73 cities have started the construction of municipal wastewater treatment plants, and other 168 cities have started to prepare, planning and design of wastewater treatment plants. Most of municipal wastewater treatment plants in big cities in China operate normally and perform well with good quality of effluent in terms of wastewater treatment train, but the sewage sludge treatment is usually poor with big problems. It has been found that the small scale WWTPs using activated sludge process in the towns are usually operated and maintained abnormally because of lack of fund, skilled operators and energy. It is therefore suggested that the small scale MWWTPs in small cities and towns adopt appropriate technologies, of which the most available ones are multi-stage ponds, constructed wetlands and the combination of them for further purification and reuse of treated wastewater.

  • PDF

Twenty-Four Hour pH Study and Manometry in Gastric Esophageal Substitutes in Children

  • Kekre, Geeta;Dikshit, Vishesh;Kothari, Paras;Laddha, Ashok;Gupta, Abhaya
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.21 no.4
    • /
    • pp.257-263
    • /
    • 2018
  • Purpose: Studies on the physiology of the transposed stomach as an esophageal substitute in the form of a gastric pull-up or a gastric tube in children are limited. We conducted a study of motility and the pH of gastric esophageal substitutes using manometry and 24-hour pH measurements in 10 such patients. Methods: Manometry and 24 hour pH studies were performed on 10 children aged 24 to 55 months who had undergone gastric esophageal replacement. Results: Six gastric tubes (4, isoperistaltic; 2, reverse gastric tubes) and 4 gastric pull-ups were studied. Two gastric tubes and 4 gastric pull-ups were transhiatal. Four gastric tubes were retrosternal. The mean of the lowest pH at the midpoint of the substitute was 4.0 (range, 2.8-5.0) and in the stomach remaining below the diaphragm was 3.3 (range, 1.9-4.2). In both types of substitute, the difference between the peak and the nadir pH recorded in the intra-thoracic and the sub-diaphragmatic portion of the stomach was statistically significant (p<0.05), with the pH in the portion below the diaphragm being lower. The lowest pH values in the substitute and in the remnant stomach were noted mainly in the evening hours whereas the highest pH was noted mainly in the morning hours. All the cases showed a simultaneous rise in the intra-cavitatory pressure along the substitute while swallowing. Conclusion: The study suggested a normal gastric circadian rhythm in the gastric esophageal substitute. Mass contractions occurred in response to swallowing. The substitute may be able to effectively clear contents.

Seawater-driven forward osmosis for direct treatment of municipal wastewater

  • Sun, Yan;Bai, Yang;Tian, Jiayu;Gao, Shanshan;Zhao, Zhiwei;Cui, Fuyi
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.449-462
    • /
    • 2017
  • Direct treatment of municipal wastewater by forward osmosis (FO) process was evaluated in terms of water flux decline, reverse salt diffusion, pollutants rejection and concentration efficiency by using synthetic seawater as the draw solution. It was found that when operating in PRO mode (active layer facing the draw solution), although the FO membrane exhibited higher osmotic water flux, more severe flux decline and reverse salt diffusion was also observed due to the more severe fouling of pollutants in the membrane support layer and accompanied fouling enhanced concentration polarization. In addition, although the water flux decline was shown to be lower for the FO mode (active layer facing the feed solution), irreversible membrane fouling was identified in both PRO and FO modes as the water flux cannot be restored to the initial value by physical flushing, highlighting the necessity of chemical cleaning in long-term operation. During the 7 cycles of filtration conducted in the experiments, the FO membrane exhibited considerably high rejection for TOC, COD, TP and $NH_4{^+}-N$ present in the wastewater. By optimizing the volume ratio of seawater draw solution/wastewater feed solution, a concentration factor of 3.1 and 3.7 was obtained for the FO and PRO modes, respectively. The results demonstrated the validity of the FO process for direct treatment of municipal wastewater by using seawater as the draw solution, while facilitating the subsequent utilization of concentrated wastewater for bioenergy production, which may have special implications for the coastline areas.

Inflammatory Bowel Disease and Risk of Cholangiocarcinoma: Evidence from a Meta-analysis of Population-based Studies

  • Huai, Jia-Ping;Ding, Jin;Ye, Xiao-Hua;Chen, Yan-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3477-3482
    • /
    • 2014
  • Objective: Patients with inflammatory bowel disease (IBD) have an increased risk of extra-intestinal cancer, whereas its impact on cholangiocarcinoma (CC) remains unknown. The aim of this study was to obtain a reliable estimate of the risk of CC in IBD patients through a meta-analysis of clinical observational studies. Methods: Relevant studies were retrieved by searching PUBMED, EMBASE and Web of Science Databases up to Dec 2013. Four population-based case-control and two cohort studies with IBD were identified. Summary relative risk (RR) and its corresponding 95% confidence interval (CI) were calculated using a random-effects model. Potential sources of heterogeneity were detected using subgroup analyses. Results: The pooled risk estimate indicated IBD patients were at increased risk of CC (RR = 2.63, 95%CI = 1.47-4.72). Moreover, the increased risk of CC was also associated with Crohn's disease (RR = 2.69, 95%CI = 1.59-4.55) and ulcerative colitis (RR = 3.40, 95%CI = 2.50-4.62). In addition, site-specific analyses revealed that IBD patients had an increased risk of intrahepatic CC (ICC) (RR = 2.61, 95%CI = 1.72-3.95) and extrahepatic CC (ECC) (RR = 1.47, 95%CI = 1.10-1.97). Conclusions: This study suggests the risk of CC is significantly increased among IBD patients, especially in ICC cases. Further studies are warranted to enable definite conclusions to be drawn.

Targeting SHCBP1 Inhibits Cell Proliferation in Human Hepatocellular Carcinoma Cells

  • Tao, Han-Chuan;Wang, Hai-Xiao;Dai, Min;Gu, Cheng-Yu;Wang, Qun;Han, Ze-Guang;Cai, Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5645-5650
    • /
    • 2013
  • Src homology 2 domain containing (SHC) is a proto-oncogene which mediates cell proliferation and carcinogenesis in human carcinomas. Here, the SHC SH2-domain binding protein 1 (SHCBP1) was first established to be up-regulated in human hepatocellular carcinoma (HCC) tissues by array-base comparative genome hybridization (aCGH). Meanwhile, we examine and verify it by quantitative real-time PCR and western blot. Our current data show that SHCBP1 was up-regulated in HCC tissues. Overexpression of SHCBP1 could significantly promote HCC cell proliferation, survival and colony formation in HCC cell lines. Furthermore, knockdown of SHCBP1 induced cell cycle delay and suppressed cell proliferation. Furthermore, SHCBP1 could regulate the expression of activate extracellular signal-regulated kinase 1/2 (ERK1/2) and cyclin D1. Together, our findings indicate that SHCBP1 may contribute to human hepatocellular carcinoma by promoting cell proliferation and may serve as a molecular target of cancer therapy.

Expression and Clinical Significance of Hedgehog Signaling Pathway Related Components in Colorectal Cancer

  • Wang, Hong;Li, Yu-Yuan;Wu, Ying-Ying;Nie, Yu-Qiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2319-2324
    • /
    • 2012
  • Aim: To investigate the expression of three components of the Hedgehog (Hh) signaling pathway (SHH, SMO and GLI1) in human colorectal cancer (CRC) tissues and evaluate their association with clinicopathologic characteristics of the patients. Methods: Fresh tumor tissues and matched tissues adjacent to the tumor were collected from 43 CRC patients undergoing surgery. Normal colorectal tissues from 20 non-CRC cases were also sampled as normal controls. The expression of SHH, SMO, GLI1 mRNAs was assessed by RT-PCR and proteins were detected by immunohistochemical staining. Associations with clinicopathological characteristics of patients were analyzed. Results: SHH mRNA was expressed more frequently in tumor tissues than in normal tissues, but the difference did not reach significance in comparison to that in the adjacent tissues. SMO and GLI1 mRNAs were expressed more frequently in tumor tissues than in both adjacent andnormal tissues. The expression intensities of SHH, SMO, GLI1 mRNA in tumor tissues were significantly higher than those in adjacent tissues and normal tissues. Proteins were also detected more frequently in tumors than other tissues. No significant links were apparent with gender, age, location, degree of infiltration or Dukes stage. Conclusion: Positive rates and intensities of mRNA and protein expression of Hh signaling pathway related genes SHH, SMO, GLI1 were found to be significantly increased in CRC tissues. However, over-expression did not appear to be associated with particular clinicopathological characteristics.

Characterization of Algal-Bacterial Ecological Interaction and Nutrients Removal Under Municipal Wastewater Condition (실제 하수조건에서 조류-세균 복합군집의 생태적 상호작용 및 영양염류 제거 특성 규명)

  • Lee, Jang-Ho;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.314-324
    • /
    • 2011
  • Algal biomass cultivated by wastewater is potentially useful resource for biodiesel production. However, little is known about algal nutrient metabolism and microbial interaction with bacteria under real municipal wastewater condition. In this work, we characterized nitrogen and phosphorus removals of municipal wastewater by a representative wastewater-growing algal population. Ankistrodesmus gracilis SAG 278-2, and analyzed its ecological interaction with wastewater bacterial communities. Compared to wastewater sludge itself, algal-bacterial co-culture improved nutrient removal. According to bacterial community analysis with 16S rRNA genes, a selective and dominant growth of a Unclassified Alcaligenaceae population resulted from algal growth in the algal-bacterial co-culture. The selectively stimulated bacterial population is phylogenetically close to Alcaligenes faecalis subsp. 5659-H, which is known to be co-present interact with algae in aquatic environment. These findings suggest that algal growth/metabolism may have effects on selection of a specific bacterial population in algal-bacterial co-cultures that can efficiently remove nutrients from municipal wastewater.