• Title/Summary/Keyword: Multivariate wind speed model

Search Result 11, Processing Time 0.027 seconds

Copula-ARMA Model for Multivariate Wind Speed and Its Applications in Reliability Assessment of Generating Systems

  • Li, Yudun;Xie, Kaigui;Hu, Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.421-427
    • /
    • 2013
  • The dependence between wind speeds in multiple wind sites has a considerable impact on the reliability of power systems containing wind energy. This paper presents a new method to generate dependent wind speed time series (WSTS) based on copulas theory. The basic feature of the method lies in separating multivariate WSTS into dependence structure and univariate time series. The dependence structure is modeled through the use of copulas, which, unlike the cross-correlation matrix, give a complete description of the joint distribution. An autoregressive moving average (ARMA) model is applied to represent univariate time series of wind speed. The proposed model is illustrated using wind data from two sites in Canada. The IEEE Reliability Test System (IEEE-RTS) is used to examine the proposed model and the impact of wind speed dependence between different wind regimes on the generation system reliability. The results confirm that the wind speed dependence has a negative effect on the generation system reliability.

Short-term Wind Farm Power Forecasting Using Multivariate Analysis to Improve Wind Power Efficiency (풍력발전 설비 효율화를 위한 다변량 분석을 이용한 풍력발전단지 단기 출력 예측 방법)

  • Wi, Young-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.54-61
    • /
    • 2015
  • This paper presents short-term wind farm power forecasting method using multivariate analysis and time series. Based on factor analysis, the proposed method makes new independent variables which newly composed by raw independent variables such as wind speed, ramp rate, wind power. Newly created variables are used in the time series model for forecasting wind farm power. To demonstrate the improved accuracy, the proposed method is compared with persistence model commonly used as reference in wind power forecasting using data from Jeju Island. The results of case studies are presented to show the effectiveness of the proposed forecasting method.

A joint probability distribution model of directional extreme wind speeds based on the t-Copula function

  • Quan, Yong;Wang, Jingcheng;Gu, Ming
    • Wind and Structures
    • /
    • v.25 no.3
    • /
    • pp.261-282
    • /
    • 2017
  • The probabilistic information of directional extreme wind speeds is important for precisely estimating the design wind loads on structures. A new joint probability distribution model of directional extreme wind speeds is established based on observed wind-speed data using multivariate extreme value theory with the t-Copula function in the present study. At first, the theoretical deficiencies of the Gaussian-Copula and Gumbel-Copula models proposed by previous researchers for the joint probability distribution of directional extreme wind speeds are analysed. Then, the t-Copula model is adopted to solve this deficiency. Next, these three types of Copula models are discussed and evaluated with Spearman's rho, the parametric bootstrap test and the selection criteria based on the empirical Copula. Finally, the extreme wind speeds for a given return period are predicted by the t-Copula model with observed wind-speed records from several areas and the influence of dependence among directional extreme wind speeds on the predicted results is discussed.

STOCHASTIC SIMULATION OF DAILY WEATHER VARIABLES

  • Lee, Ju-Young;Kelly brumbelow, Kelly-Brumbelow
    • Water Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.111-126
    • /
    • 2003
  • Meteorological data are often needed to evaluate the long-term effects of proposed hydrologic changes. The evaluation is frequently undertaken using deterministic mathematical models that require daily weather data as input including precipitation amount, maximum and minimum temperature, relative humidity, solar radiation and wind speed. Stochastic generation of the required weather data offers alternative to the use of observed weather records. The precipitation is modeled by a Markov Chain-exponential model. The other variables are generated by multivariate model with means and standard deviations of the variables conditioned on the wet or dry status of the day as determined by the precipitation model. Ultimately, the objective of this paper is to compare Richardson's model and the improved weather generation model in their ability to provide daily weather data for the crop model to study potential impacts of climate change on the irrigation needs and crop yield. However this paper does not refer to the improved weather generation model and the crop model. The new weather generation model improved will be introduced in the Journal of KWRA.

  • PDF

Water Temperature Prediction Study Using Feature Extraction and Reconstruction based on LSTM-Autoencoder

  • Gu-Deuk Song;Su-Hyun Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.13-20
    • /
    • 2023
  • In this paper, we propose a water temperature prediction method using feature extraction and reconstructed data based on LSTM-Autoencoder. We used multivariate time series data such as sea surface water temperature in the Naksan area of the East Sea where the cold water zone phenomenon occurred, and wind direction and wind speed that affect water temperature. Using the LSTM-Autoencoder model, we used three types of data: feature data extracted through dimensionality reduction of the original data combined with multivariate data of the original data, reconstructed data, and original data. The three types of data were trained by the LSTM model to predict sea surface water temperature and evaluated the accuracy. As a result, the sea surface water temperature prediction accuracy using feature extraction of LSTM-Autoencoder confirmed the best performance with MAE 0.3652, RMSE 0.5604, MAPE 3.309%. The result of this study are expected to be able to prevent damage from natural disasters by improving the prediction accuracy of sea surface temperature changes rapidly such as the cold water zone.

Development of Typhoon Damage Forecasting Function of Southern Inland Area By Multivariate Analysis Technique (다변량 통계분석을 이용한 남부 내륙지역 태풍피해예측모형 개발)

  • Kim, Yonsoo;Kim, Taegyun
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.281-289
    • /
    • 2019
  • In this study, the typhoon damage forecasting model was developed for southern inland district. The typhoon damage in the inland district is caused by heavy rain and strong winds, variables are many and varied, but the damage data of the inland district are not enough to develop the model. The hydrological data related to the typhoon damage were hour maximum rainfall amount which is accumulated 3 hour interval, the total rainfall amount, the 1-5 day anticipated rainfall amount, the maximum wind speed and the typhoon center pressure at latitude 33° near the Jeju island. The Multivariate Analysis such as cluster Analysis considering the lack of damage data and principal component analysis removing multi-collinearity of rainfall data are adopted for the damage forecasting model. As a result of applying the developed model, typhoon damage estimated and observed values were up to 2.2 times. this is caused it is difficult to estimate the damage caused by strong winds and it is assumed that the local rainfall characteristics are not considered properly measured by 69 ASOS.

Investigating the performance of different decomposition methods in rainfall prediction from LightGBM algorithm

  • Narimani, Roya;Jun, Changhyun;Nezhad, Somayeh Moghimi;Parisouj, Peiman
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.150-150
    • /
    • 2022
  • This study investigates the roles of decomposition methods on high accuracy in daily rainfall prediction from light gradient boosting machine (LightGBM) algorithm. Here, empirical mode decomposition (EMD) and singular spectrum analysis (SSA) methods were considered to decompose and reconstruct input time series into trend terms, fluctuating terms, and noise components. The decomposed time series from EMD and SSA methods were used as input data for LightGBM algorithm in two hybrid models, including empirical mode-based light gradient boosting machine (EMDGBM) and singular spectrum analysis-based light gradient boosting machine (SSAGBM), respectively. A total of four parameters (i.e., temperature, humidity, wind speed, and rainfall) at a daily scale from 2003 to 2017 is used as input data for daily rainfall prediction. As results from statistical performance indicators, it indicates that the SSAGBM model shows a better performance than the EMDGBM model and the original LightGBM algorithm with no decomposition methods. It represents that the accuracy of LightGBM algorithm in rainfall prediction was improved with the SSA method when using multivariate dataset.

  • PDF

Prediction of High Level Ozone Concentration in Seoul by Using Multivariate Statistical Analyses (다변량 통계분석을 이용한 서울시 고농도 오존의 예측에 관한 연구)

  • 허정숙;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.207-215
    • /
    • 1993
  • In order to statistically predict $O_3$ levels in Seoul, the study used the TMS (telemeted air monitoring system) data from the Department of Environment, which have monitored at 20 sites in 1989 and 1990. Each data in each site was characterized by 6 major criteria pollutants ($SO_2, TSP, CO, NO_2, THC, and O_3$) and 2 meteorological parameters, such as wind speed and wind direction. To select proper variables and to determine each pollutant's behavior, univariate statistical analyses were extensively studied in the beginning, and then various applied statistical techniques like cluster analysis, regression analysis, and expert system have been intensively examined. For the initial study of high level $O_3$ prediction, the raw data set in each site was separated into 2 group based on 60 ppb $O_3$ level. A hierarchical cluster analysis was applied to classify the group based on 60 ppb $O_3$ into small calsses. Each class in each site has its own pattern. Next, multiple regression for each class was repeatedly applied to determine an $O_3$ prediction submodel and to determine outliers in each class based on a certain level of standardized redisual. Thus, a prediction submodel for each homogeneous class could be obtained. The study was extended to model $O_3$ prediction for both on-time basis and 1-hr after basis. Finally, an expect system was used to build a unified classification rule based on examples of the homogenous classes for all of sites. Thus, a concept of high level $O_3$ prediction model was developed for one of $O_3$ alert systems.

  • PDF

Emission Characteristics of Elemental Constituents in Fine Particulate Matter Using a Semi-continuous Measurement System (준 실시간 측정시스템을 이용한 미세입자 원소성분 배출특성 조사)

  • Park, Seung-Shik;Ondov, John M.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.190-201
    • /
    • 2010
  • Fine particulate matter < $1.8{\mu}m$ was collected as a slurry using the Semicontinuous Elements in Aerosol Sampler with time resolution of 30-min between May 23 and 27, 2002 at the Sydney Supersite, Florida, USA. Concentrations of 11 elements, i.e., Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn, in the collected slurry samples were determined off-line by simultaneous multi-element graphite furnace atomic absorption spectrometry. Temporal profiles of $SO_2$ and elemental concentrations combined with meteorological parameters such as wind direction and wind speed indicate that some transient events in their concentrations are highly correlated with the periods when the plume from an animal feed supplement processing facility influenced the Sydney sampling site. The peaking concentrations of the elemental species during the transient events varied clearly as the plume intensity varied, but the relative concentrations for As, Cr, Pb, and Zn with respect to Cd showed almost consistent values. During the transient events, metal concentrations increased by factors of >10~100 due to the influence of consistent plumes from an individual stationary source. Also the multi-variate air dispersion receptor model, which was previously developed by Park et al. (2005), was applied to ambient $SO_2$ and 8 elements (Al, As, Cd, Cr, Cu, Fe, Pb, and Zn) measurements between 20:00 May 23 and 09:30 May 24 when winds blew from between 70 and $85^{\circ}$, in which animal feed processing plant is situated, to determine emission and ambient source contributions rates of $SO_2$ and elements from one animal feed processing plant. Agreement between observed and predicted $SO_2$ concentrations was excellent (R of 0.99; and their ratio, $1.09{\pm}0.35$) when one emission source was used in the model. Average ratios of observed and predicted concentrations for As, Cd, Cr, Pb, and Zn varied from $0.83{\pm}0.26$ for Pb to $1.12{\pm}0.53$ for Cd.

Distribution Characteristics of PM10 and Heavy Metals in Ambient Air of Gyeonggi-do Area using Statistical Analysis (통계분석을 이용한 경기도 대기 중 미세먼지 및 중금속 분포 특성)

  • Kim, Jong Soo;Hong, Soon Mo;Kim, Myoung Sook;Kim, Yo Yong;Shin, Eun Sang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.281-290
    • /
    • 2014
  • This study was conducted to evaluate the distribution characteristics of $PM_{10}$ and heavy metals concentrations in the ambient air of Gyeonggi-do area by region and season from February, 2013 to March, 2014. The regression model for the prediction of formation characteristics and contamination degree of $PM_{10}$ and heavy metals by correlation analysis and regression analysis for using the multivariate statistical analysis was also established. The main wind direction during the investigation period was South East (SE) and West South West (WSW) winds, and the concentration of $SO_2$ at Ansan with industrial region showed 1.6 times higher than Suwon, Euiwang with residential region. The concentrations (median) of Pb, Cu and Ni at Ansan showed 3.2~4.5, 1.9~2.2 and 1.7~2.6 times respectively higher than those at Suwon. By the seasonal concentration variation, the concentrations of $PM_{10}$, Pb, Fe and As in winter and spring (December to May) showed 1.7, 1.9, 1.9 and 2.7 times respectively higher than those in summer and fall (June to November). As, Fe and $PM_{10}$ had a big difference by the seasonal factors, and Cu and Ni were evaluated to be influenced by the regional factors. From the results of correlation analysis among the target items, the correlation coefficient of PM and Mn had 0.82 (p/0.01) and that of Fe and Mn had 0.82 (p/0.01), which showed high correlation. And the correlation coefficients for $SO_2$ and Pb, CO and $PM_{10}$ were 0.66 (p/0.01) and 0.62 (p/0.01) respectively. The multiple linear regression models for $PM_{10}$, Pb, Cu, Cr, As, Ni, Fe and Mn were established by independent variables of CO, $SO_2$ and meteorological factors (wind speed, relative humidity). In the regression models, independent variable $SO_2$ was in cause-and-effect relationship with all dependent variables, and $PM_{10}$, Fe and Mn were influenced by CO and wind speed, and Pb, Cu, Ni and As had a main factor of $SO_2$.