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Yudun Li*, Kaigui Xie
†
 and Bo Hu* 

 

Abstract – The dependence between wind speeds in multiple wind sites has a considerable impact on 

the reliability of power systems containing wind energy. This paper presents a new method to generate 

dependent wind speed time series (WSTS) based on copulas theory. The basic feature of the method 

lies in separating multivariate WSTS into dependence structure and univariate time series. The 

dependence structure is modeled through the use of copulas, which, unlike the cross-correlation 

matrix, give a complete description of the joint distribution. An autoregressive moving average 

(ARMA) model is applied to represent univariate time series of wind speed. The proposed model is 

illustrated using wind data from two sites in Canada. The IEEE Reliability Test System (IEEE-RTS) is 

used to examine the proposed model and the impact of wind speed dependence between different wind 

regimes on the generation system reliability. The results confirm that the wind speed dependence has a 

negative effect on the generation system reliability.  
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1. Introduction 
 
Wind energy has attracted more and more attentions 

around the world due to its excellent economic and social 

benefits. Moreover, enhanced public awareness of the 

environment has promoted the further development of 

wind energy. With the extensive utilization of wind energy, 

there may be multiple wind farms integrated into power 

systems in a region. Due to the spatial and locational 

relationship between wind sites, there exists dependence 

between wind speed time series (WSTS) in different wind 

farms. The wind speed dependence has a considerable 

impact on reliability of power systems integrated wind 

energy and the impact will be more prominent when the 

quantity of wind farms and their installed capacity increase. 

Therefore, it is necessary to consider the dependence 

between WSTS in the reliability assessment model. 

Considerable work has been done on the development of 

models and techniques for reliability assessment of 

generating systems incorporating multiple wind farms [1-7]. 

In [1], a simple probabilistic model based on stochastic 

transitional probability matrix is proposed in which the 

correlation between different wind regimes is considered. 

Based on capacity- probability tables, an approach to 

model a two-site wind energy conversion system is 

proposed [2]. In [3], a reliability evaluation model of wind 

farms considering the wind speed correlation using cross-

correlation is presented and the impact of correlation is 

investigated. In [4, 5], a trial and error method (TEM) is 

used to search the appropriate initial number seeds of auto-

regressive and moving average (ARMA) models. The 

method is capable of simulating correlated hourly WSTS 

with specified cross-correlation coefficients of two wind 

sites. However, this method can be difficult to find the 

appropriate initial seeds for multiple wind sites. Consequently, 

an improvement of this method by applying genetic 

algorithm methods is made to find the suitable initial 

number seeds for ARMA time series models [6]. Using 

time-shifting technique, a novel method for producing new 

WSTS with a given correlation between two wind sites is 

presented [7]. Most of the proposed methods are based on 

the linear correlation coefficient (LCC). However, it is a 

measure of linear dependence and cannot provide a complete 

representation of dependence between WSTS. 

The multivariate distribution function (MDF) is the most 

comprehensive method to describe dependence between 

random variables. It contains all statistical properties of 

random variables. However, there exist some drawbacks in 

MDF method. For examples, it is only suitable for special 

marginal distributions such as normal, lognormal, and 

gamma distributions. The disadvantages limit the practical 

applications of this method. 

The copulas technique can overcome these drawbacks. A 

copula is a function that couples marginal distributions and 

MDF. According to copulas, a MDF can be decomposed 

into two parts: n-marginal distribution functions and a 

dependence structure which can be described by a copula 

function. In the late 1990s, the copulas theory was rapidly 

developed and widely applied in financial [8, 9], hydrological 

[10, 11], and power systems [12, 13].  
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This paper presents a technique for generating dependent 

WSTS using copulas and applies it to the reliability analysis 

of power systems containing multiple wind farms. The 

impacts of wind speed dependence on generation system 

adequacy (or reliability) are illustrated using the IEEE 

Reliability Test System (IEEE-RTS) [14]. The three basic 

reliability indices of the loss of load expectation (LOLE), 

the loss of energy expectation (LOEE) and loss of load 

frequency (LOLF) [15] are used to quantify the system 

reliability. 

The rest of the paper is organized as follows. Section II 

gives a brief introduction to copulas theory. Section III 

presents the ARMA model for WSTS. The methodology to 

establish the multivariate wind speed model is described in 

Section IV. Section V presents the algorithm for the 

development of multivariate WSTS model. Case studies of 

the proposed model and impacts of wind speed dependence 

on the generation system reliability are given in Section VI 

and VII, respectively. Conclusions are stated in Section 

VIII. 

 

 

2. Copulas Theory 

 

The necessary concepts of copulas theory, the commonly 

used copulas, the methodology of model identification and 

the simulation technique for copulas are presented in this 

section. Interested readers are referred to [8] and [16] for 

detailed information. 

 

2.1 Copulas and dependence 

 

An N-dimensional copula is a multivariate cumulative 

distribution function (CDF) C with margins uniformly 

distributed in [0, 1] and with the following properties [16]: 

1) C has a domain of IN=[0, 1]N; 

2) C is grounded and N-increasing; 

3) C has margins Ck (k=1,2,…,N), which satisfy Ck (u) = 

C(1,…1, u,1,…,1) =u for all u in [0,1]. 

 

It is obvious that if F1, F2,..., FN are univariate CDFs, C 

(F1(x1), F2(x2), ..., FN(xN)) is a multivariate CDF with 

margins F1, F2,..., FN. 

Let F be an N-dimensional CDF of WSTS X= (X1, 

X2,…,XN) with continuous margins F1, F2,..., FN. According 

to Sklar’s theorem [16], there exists the following unique 

copula representation: 

 

 ( )1 2 1 1 2 2( , ,..., ) , ( ),..., ( )N N NF x x x C F (x ) F x F x=  (1) 

 

Sklar’s Theorem is the basis of copulas theory and its 

application. It provides a way to analyze the dependence 

structure of multivariate distributions without studying 

marginal distributions. 

The most widely used dependence index is LCC, which 

measures the degree of linear relationship between time 

series. However, this measure may create a misleading 

conclusion if the random variables do not meet the 

elliptical distributions or are obtained by nonlinear 

transformations. Therefore, the Kendall’s tau, which is 

based on the rank of variables and reflects the concordance 

between variables, can be used as a more appropriate 

dependence measure. The Kendall’s tau is superior to the 

LCC because of its invariance under strictly monotonic 

transformations and no restriction on wind speed distri-

butions [8]. 

 

2.2 Commonly used copulas 
 
There are many types of copulas, such as normal copulas, 

student-t copulas, and Archimedean copulas. The 

discussion of the paper will concentrate on normal copulas 

and Archimedean copulas. 

 

1) Normal Copulas 
 
An N-dimensional normal copula can be expressed as 

follows: 

 

 ( )( ,..., ; ) ... ( )1 1

1 1( ) N NC u u Φ Φ u Φ uρρ − −= + +  (2) 

 
where ρ is a correlation coefficient matrix, Φρ(·,...,·) is the 

standard multivariate normal distribution function, and Φ-

1(·) is the inverse function of standard normal distribution 

function. 

 

2) Archimedean copulas  
 
The class of Archimedean copulas is an important class 

for which the construction of multivariate copulas can be 

performed quite generally. An N-dimensional Archimedean 

copula can be expressed as follows 0: 

 

 ( )1

1 1( ,..., ) ... ( )N NC u u (u ) uϕ ϕ ϕ−= + +  (3) 

 

where φ(·) is the generator of Archimedean copulas. 

Archimedean copulas are determined by generators. 

Commonly used Archimedean copulas include Gumbel 

copula, Clayton copula, and Frank copula. Table 1 gives 

their generators. 

 

Table 1. Generators of Archimedean copulas 

Copula Generator Range of parameter 

Gumbel (−lnu)θ [1,+∞) 

Clayton (u-θ−1)/θ [−1,0) ∪(0, +∞) 

Frank ln(e-θ−1) −ln(e-θu−1) (−∞, 0) ∪(0,+∞) 

 

However, the Archimedean copulas generated from (3) 

are exchangeable and limited in describing various 

dependence structures among joint distribution. Hence, a 
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more developed method is proposed in [17] for general 

extension by the following coupling scheme: 

 

1 2 1 2 1 1 2 1( , ,..., ) ( , ( ,..., ( , ))N N N NC u u u C u C u C u u− −=  (4) 

 

It is possible that φi in Ci are generators of different types 

of Archimedean copulas. 

According to Eq. (4), an N-dimensional Archimedean 

copulas can be constructed by N-1 bivariate Archimedean 

copulas. 

 

2.3 Selection of the optimal copulas 

 

Many methods can be used to select copulas 0. A 

shortest distance method (SDM) based on the empirical 

copula is used to select the optimal copula. The empirical 

copula can be expressed as the following formula: 

 

 

( )( ) ( )( )

, , ,

,.., ,..,

,.., ,..,1

1

1 1

1

 

1
    k N

k N

e

n
i ii

j k j k N j N

j

i ii
C

n n n

x x x x x x
n

Ι
=

 
 
 

= ≤ ≤ ≤∑
 (5) 

 

where xk
(i ) is the order statistics and 1≤i1, …, iN≤n 

The Euclidean distance between the empirical and 

theoretical copula is calculated using the following 

formula: 

 
/

( , ) ... ,,.., , ,..,
1

1 2
2

1 1

1 1

   
N

n n
N N

e e

i i

i ii i
d C C C C

n n n n= =

      
= −     

      
∑ ∑  

  (6) 

 

The optimal copula is the one with the shortest distance. 

 

2.4 Sampling copulas 
 
A copula is a multivariate joint distribution function 

and therefore, conventional simulation methods can be 

used to generate samples from the copulas. The Marshall-

Olkin method 0 is applied in this paper to simulate the 

Archimedean copulas and briefly described in the following 

steps: 

Step 1 Generate a random number V for each distribution 

function G(·), where G=L-1[φ-1(t)], L-1 stands for 

inverse Laplace transform; 

Step 2 Generate N random numbers x1, x2, x3, …, xN, each 

of which meets the (0,1) uniform distribution; 

Step 3 Let Un=G(-ln(xn)/V), n=1, 2, …, N. 

 

Following the above procedures, a vector U of random 

numbers whose generator φ(·) meets the distribution of 

Archimedean copulas can be formed. 

3. ARMA Model for Univariate WSTS 

 

An essential requirement in incorporating WECS in 

power system reliability analysis using sequential Monte 

Carlo simulation is to realistically simulate the hourly 

WSTS. Wind speed varies with time and location, and at a 

specific hour, it is related to the wind speeds of previous 

hours. The ARMA model, which has the advantage of 

containing a time-order feature, has been widely used to 

simulate the WSTS in the reliability study [3-6, 18]. The 

general expression for the ARMA (p, q) model is shown in 

the following equation: 

 

 
1 1

p q

t i t i t j t ji j
x xϕ ε θ ε− −= =
= + −∑ ∑  (7) 

 

where xt is the series value at time t, φi (i=1,2,…, p) and θj 

(j=1,2,…,q) are autoregression and moving average 

parameters, respectively, {εt } is a normal white noise 

process with zero mean and a variance of σε
2,ie. εt ∈NID(0, 

σε
2) where NID denotes a normal independent distribution.  

The hourly-simulated wind speed tSW  at time t is 

obtained from the mean speed µt, the standard deviation σt 

and the time series xt as shown in (8). 

 

 t t t tSW xµ σ= + ×   (8) 

 

New values of xt can be calculated using Eq. (7) from 

current random white noise at and previous values of xt-i. 

According to Eq. (7), the ARMA model is composed of 

two parts, the autoregressive (AR) model involving lagged 

terms in the time series itself, and the moving average 

(MA) model involving lagged terms in the white noise 

(independent standard normal errors), which determine the 

dependence between the different time series. It is, 

therefore, possible to adjust the wind speed dependence 

level between two or more different wind farms by 

generating a dependent N-dimensional vector of time series 

εt = (ε1t, ε2t,.., εNt ) using copulas.  

 

 

4. Copula-ARMA Model for Multivariate WSTS 

 

A Copula-ARMA model composed of a copula function 

and ARMA model is proposed for multivariate WSTS in 

this section. 

Assume that x= (x1t, x2t... xNt) is an N-dimensional vector 

of time series and each marginal series can be described 

by ARMA (p, q), then the N-dimensional Copula-ARMA 

(p, q) model can be expressed as: 

 

 
1 1

1 2
1 2

1 2

1,..,

( , ,..., ) ~ , ,...,

p q

kt ki kt i kt kj kt j
i j

t t Nt
t t Nt a

N

x x , k N

C Φ Φ Φ

ϕ ε θ ε

ε ε ε
ε ε ε

σ σ σ

− −= =

 = + − =
      
              

∑ ∑
 (9) 
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where ε= (ε1t, ε2t,..., εNt) are the N-dimensional vector of 

normal white noise series, (σ1, σ2,..., σN) are the standard 

deviations of corresponding univariate series, Φ(·) is the 

standard normal distribution, and Ca is a N-dimensional 

copula function that describe the dependence structure 

between the univariate series. 

According to Eq. (9), the dependence level between the 

WSTS depends on that between white noise series. If the 

white noise series are generated independently, then the 

WSTS obtained are also independent of each other. 

Therefore, the key factor to obtain dependent WSTS is to 

generate dependent white noise series. 

Assume that the dependence structure between 

univariatetime series xit can be described by an N- 

dimensional copula function Cb. 

 

( )1 2 1 1 2 2( , ,..., ) ~ , ( ),..., ( )t t Nt b t t N Ntx x x C F (x ) F x F x  (10) 

 

where Fi are the CDFs of series xit. 

Study shows that copula functions are invariant under 

strictly increasing transformations of the random variables, 

which is an attractive property of copulas [8, 16]. It can be 

found from Eq. (7) that the partial derivative of xit with 

respect to εit is 1, namely ∂xit/∂εit =1. Thus, the N-

dimensional copula function Cb describing dependence 

structure among time series xit is identical to the copula 

function Ca for the white noise series 

 

 

( )

, ,...,

, ( ),...,

1 2

1 2

1 1 2 2

 

                ( ) ( )

t t Nt

a

N

b t t N Nt

C Φ Φ Φ

C F x F x F x

ε ε ε
σ σ σ

     
            

=

 (11) 

 

Copula function Cb can be easily estimated using the real 

WSTS. 

 

 

5. Algorithm for Multivariate Wind  

Speed Model 

 

From the description above, an algorithm for modeling 

multivariate WSTS using Copula-ARMA can be synthesized 

as follows: 

Step 1 Determine the ARMA model for WSTS at each 

wind site; 

a) Transformed the wind speed data by the mean 

speed µit and the standard deviation σit at time t 

and obtain times series xit ; 

b) Construct ARMA model for times series xit based 

on the method described in [18].  

Step 2 Indentify a copula function to describe the dependence 

structure among time series xit; 

a) Transform time series xit into uniformly distributed 

time series uit using corresponding CDF; 

b) Calculated the parameters of copula functions 

based on the series (u1t, u2t,.., uNt ) ; 

c) Choose the optimal copula functions for the 

multivariate WSTS using SDM;  

Step 3 Construct the multivariate Copula-ARMA model of 

WSTS based on Eq. (9). 

 

 

6. Case Studies –Verification of  

Copula-ARMA Model 

 

The wind speed data in two sites, Regina and Swift 

Current in Saskatchewan, Canada are used in this paper to 

demonstrate the accuracy and the effectiveness of the 

model. Hourly WSTS for five years (from January 1, 1999 

to December 31, 2003) obtained from Environment Canada 

were used are used for model identification. The main 

statistics of the historical data are listed in Table 2. 

 

Table 2. Main statistics of real wind speed data 

Statistics Regina Swift Current 

Mean(m/s) µ 5.42 5.41 

Standard deviation (m/s) σ 3.05 2.69 

Linear correlation coefficient ρ 0.4901 

Kendall's tau rank correlation τ 0.3299 

 

The multivariate normal copulas and Archimedean 

copulas introduced above are used to capture the 

dependence structure between WSTS of the two sites. The 

dependence parameters of Archimedean copulas are 

calculated using the maximum likelihood estimation 

method 0. Table 3 gives the values of parameters of 

different copula functions and Table 4 shows the Euclidean 

distance between the empirical and theoretical copula. 

 

Table 3. Values of copulas parameter 

Copula θ 

Gumbel 1.4162 

Clayton 3.1479 

Frank 0.5633 

Gauss 0.4904 

 

Table 4. Euclidean distance between empirical and theoretical 

copulas 

Copula d(Ce ,C) 

Gumbel 0.0085 

Clayton 0.1797 

Frank 0.0266 

Gauss 0.0190 

 

It can be observed from Table 4 that Gumbel copula has 

the shortest Euclidean distance. Therefore, Gumbel copula 

is used to describe the dependence structure between 

WSTS of the two sites in this paper, as the following 

formula: 
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( ) ( )

( ) ( )( )
/

( , ) ~ ,

exp ln ln

1 2 1 2

1

1 2
            

t t t t

t t

C Φ Φ

Φ Φ
θθ θ

ε ε ε ε

ε ε

  

    = − − + −     

 

  (12) 

 

The ARMA models of WSTS for the two sites [18] are 

as follows: 

 

Regina: ARMA (4, 3): 

  
1 2 3 4

1 2 3

0.9336 0.4506 0.5545 0.1110

0.2033 0.4684 0.2301

t t t t t

t t t t

x x x x  x

                 ε ε ε ε
− − − −

− − −

= + − +

+ − − +
 

2(0,0.4094 )t NIDε ∈   (13) 

 

Swift Current: ARMA (4, 3): 

1 2 3 4

1 2 3

1.1772 0.1001 0.3572 0.0379

0.5030 0.2924 0.1317

t t t t t

t t t t

x x x x  x

                ε ε ε ε
− − − −

− − −

= + − +

+ − − +
  

2(0,0.5248 )t NIDε ∈   (14) 

 

Two hundred years of simulated wind speed were 

generated for the two sites using the proposed Copula-

ARMA model and the TEM-ARMA method. Table 5 

shows the main statistics of the simulated WSTS. It can be 

found that the Copula-ARMA model can preserve all the 

main statistics of real data well, while the TEM-ARMA 

product a recognizable difference for Kendall's tau rank 

correlation, in general, the Kendall's tau of the WSTS 

generated using TEM-ARMA method does not match the 

one of the real wind data satisfactorily. 

In order to compare the probability distribution of the 

two models, the values of bivariate empirical cumulative 

distribution function (B-ECDF) of the wind data simulated 

from the models are plotted against those from the real 

wind data as shown in Fig. 1 and Fig. 2, respectively. The 

probability-probability (P-P) plot is a standard means of 

comparing probability distributions. If the simulated wind 

data and the real one are from the same distribution, then 

the P-P plot follows approximately a straight line with a 

unit slope. The values of B-ECDF at sample points {(x1i, 

x2i), t=1, 2, T} can be calculated using the following 

formula: 
 

 ( , ) ( , )
1 2 1 1 2 2

1

1

1

n

i i t i t i

t

F x x x x x x
n

Ι
=

= ≤ ≤
+ ∑  (15) 

 
Here, n is the sample size, I is an indicator function 

whose value is equal to one if the condition in the bracket 

is satisfied. Otherwise, it is zero. 

It can be observed that the Copula-ARMA model can 

preserve the bivariate distribution of real data better than 

the TEM-ARMA method. The residual sum of squares 

between real and simulated wind data from the Copula-

ARMA model and the TEM-ARMA method are 0.4493 

and 1.0483, respectively. It shows that copulas-based 

model can represent the dependence between wind speeds 

more accurately than the LCC-based model. 

 

 

7. Case Studies – Impacts of Wind Speed  

Dependence on Generation System Reliability 

 

The IEEE-RTS has 32 traditional generating units with 

Table 5. Main statistics of simulated wind speed data 

Copula-ARMA TEM-ARMA 
Statistics 

Regina Swift Current Regina Swift Current 

µ 5.45 5.46 5.46 5.44 

σ 3.07 2.72 3.09 2.73 

ρ 0.4896 0.4916 

τ 0.3294 0.3927 
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Fig. 1. P-P plot of Copula-ARMA-simulated wind data 

against real one 
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Fig. 2. P-P plot of TEM-ARMA-simulated wind data against

real one 
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the rated capacities from 12 MW to 400 MW. The total 

rated capacity of the IEEE-RTS is 3405 MW and the 

system peak load is 2850 MW. The detailed generating unit 

capacities, reliability parameters and load data are given in 

[14]. 

To quantitatively assess the impacts of the wind power 

and the dependence between wind speeds on system 

reliability, the IEEE-RTS was modified to create a system 

designated as the Combined Test System (CTS) by the 

addition of the two wind farms with the capacity 300MW. 

The cut-in, rated, and cut-off wind speed of wind turbine 

generators are 3.3, 10.6, and 22.2 m/s, respectively.  

The reliability indices of the IEEE-RTS and the CTS 

calculated using Sequential Monte Carlo simulation are 

shown in Table 6. The indices of CTS in the cases of 

independence and completely dependence are shown in 

Table 7. 

It can be seen from Table 6 that the two-300MW wind 

farms have a significant impact on the IEEE-RTS reliability 

indices. From the comparison of Table 6 and 7, it can be 

found that the reliability indices for systems considering 

dependence are smaller than that without considering 

dependence. In other words, the wind speed dependence 

has a negative impact on generation system reliability. It is, 

therefore, necessary to consider dependence between WSTS 

in reliability analysis of power systems containing multiple 

wind farms. 

Fig. 3 illustrates the variation of the LOLF index with 

different dependence levels. It can be observed that the 

system reliability decrease as the dependence level 

increases. Another interesting point observed from Fig. 3 is 

that the effect of wind speed dependence on the generation 

system reliability tends to be stabilized when the dependence 

reaches a certain level. 

 
 

8. Conclusions 

 

The dependence between wind speeds has a considerable 

impact on reliability of power systems containing multiple 

wind farms. The key factor of evaluating this impact is to 

generate wind speed samples considering the dependence. 

This paper presents a Copula-ARMA model for multivariate 

WSTS by combining the copulas and ARMA model. The 

main advantage of this approach is that the margins of wind 

speed can be defined separately from their dependence 

structure and this offer a great flexibility in building 

multivariate wind speed model. The case studies demonstrate 

that the Copula-ARMA model can preserve the statistical 

characteristics of historical WSTS better that LCC-based 

methods and thus can model dependence structure between 

them more accurately. 

The IEEE-RTS is used to verify the applicability of the 

proposed model. The results show that generation system 

reliability will decrease as the wind speed dependence 

increases. Furthermore, the effect of wind speed dependence 

tends to be stabilized after a certain level.  
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