• 제목/요약/키워드: Multivariate statistics analysis

검색결과 324건 처리시간 0.023초

A Goodness-of-Fit Test for Multivariate Normal Distribution Using Modified Squared Distance

  • Yim, Mi-Hong;Park, Hyun-Jung;Kim, Joo-Han
    • Communications for Statistical Applications and Methods
    • /
    • 제19권4호
    • /
    • pp.607-617
    • /
    • 2012
  • The goodness-of-fit test for multivariate normal distribution is important because most multivariate statistical methods are based on the assumption of multivariate normality. We propose goodness-of-fit test statistics for multivariate normality based on the modified squared distance. The empirical percentage points of the null distribution of the proposed statistics are presented via numerical simulations. We compare performance of several test statistics through a Monte Carlo simulation.

정준상관분석을 통한 다변량 금융시계열의 변동성 분석 (Multivariate Volatility Analysis via Canonical Correlations for Financial Time Series)

  • 이승연;황선영
    • 응용통계연구
    • /
    • 제27권7호
    • /
    • pp.1139-1149
    • /
    • 2014
  • 다변량 금융시계열의 변동성분석을 다변량 기법인 정준상관분석(canonocal correaltion analysis)을 이용해 분석하였다. 변동성의 특성상 계수들이 비음(non-negative)인 정준상관분석, 즉, non-negative and sparse canonical correlation analysis (NSCCA)를 이용해 보았다. 본 논문은 다변량 시계열의 변동성 커브에 대해 연구하고 있으며 제시된 방법론을 이변량 주식자료분석을 통해 예시해 보았다.

Comparative Study on Statistical Packages for using Multivariate Q-technique

  • Choi, Yong-Seok;Moon, Hee-jung
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.433-443
    • /
    • 2003
  • In this study, we provide a comparison of multivariate Q-techniques in the up-to-date versions of SAS, SPSS, Minitab and S-plus well known to those who study statistics. We can analyze data through the direct Input method(command) in SAS and use of menu method in SPSS, Minitab and S-plus. The analysis performance method is chosen by the high frequency of use. Widely we compare with each Q-techniques form according to input data, input option, statistical chart and statistical output.

A Bayesian Analysis in Multivariate Bioassay and Multivariate Calibration

  • Park, Nae-Hyun;Lee, Suk-Hoon
    • Journal of the Korean Statistical Society
    • /
    • 제19권1호
    • /
    • pp.71-79
    • /
    • 1990
  • In the linear model which consider both the multivariate parallel-line bioassay and the multivariate linear calibration, this paper presents a Bayesian procedure which is an extension of Hunter and Lamboy (1981) and has several advantages compared with the non Bayesian techniques. Based on the methods of this article we discuss the effect of multivariate calibration and give a numerical example.

  • PDF

MULTIPLE DELETION MEASURES OF TEST STATISTICS IN MULTIVARIATE REGRESSION

  • Jung, Kang-Mo
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.679-688
    • /
    • 2008
  • In multivariate regression analysis there exist many influence measures on the regression estimates. However it seems to be few of influence diagnostics on test statistics in hypothesis testing. Case-deletion approach is fundamental for investigating influence of observations on estimates or statistics. Tang and Fung (1997) derived single case-deletion of the Wilks' ratio, Lawley-Hotelling trace, Pillai's trace for testing a general linear hypothesis of the regression coefficients in multivariate regression. In this paper we derived more extended form of those measures to deal with joint influence among observations. A numerical example is given to illustrate the effect of joint influence on the test statistics.

  • PDF

A Comparison Study of Multivariate Binary and Continuous Outcomes

  • Pak, Dae-Woo;Cho, Hyung-Jun
    • 응용통계연구
    • /
    • 제25권4호
    • /
    • pp.605-612
    • /
    • 2012
  • Multivariate data are often generated with multiple outcomes in various fields. Multiple outcomes could be mixed as continuous and discrete. Because of their complexity, the data are often dealt with by separately applying regression analysis to each outcome even though they are associated the each other. This univariate approach results in the low efficiency of estimates for parameters. We study the efficiency gains of the multivariate approaches relative to the univariate approach with the mixed data that include continuous and binary outcomes. All approaches yield consistent estimates for parameters with complete data. By jointly estimating parameters using multivariate methods, it is generally possible to obtain more accurate estimates for parameters than by a univariate approach. The association between continuous and binary outcomes creates a gap in efficiency between multivariate and univariate approaches. We provide a guidance to analyze the mixed data.

Canonical Correlation Biplot

  • Park, Mi-Ra;Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • 제3권1호
    • /
    • pp.11-19
    • /
    • 1996
  • Canonical correlation analysis is a multivariate technique for identifying and quantifying the statistical relationship between two sets of variables. Like most multivariate techniques, the main objective of canonical correlation analysis is to reduce the dimensionality of the dataset. It would be particularly useful if high dimensional data can be represented in a low dimensional space. In this study, we will construct statistical graphs for paired sets of multivariate data. Specifically, plots of the observations as well as the variables are proposed. We discuss the geometric interpretation and goodness-of-fit of the proposed plots. We also provide a numerical example.

  • PDF

Rank Tests for Multivariate Linear Models in the Presence of Missing Data

  • Lee, Jae-Won;David M. Reboussin
    • Journal of the Korean Statistical Society
    • /
    • 제26권3호
    • /
    • pp.319-332
    • /
    • 1997
  • The application of multivariate linear rank statistics to data with item nonresponse is considered. Only a modest extension of the complete data techniques is required when the missing data may be thought of as a random sample, and an appropriate modification of the covariances is derived. A proof of the asymptotic multivariate normality is given. A review of some related results in the literature is presented and applications including longitudinal and repeated measures designs are discussed.

  • PDF

주성분을 이용한 다변량 고빈도 실현 변동성의 주기 선택 (Choice of frequency via principal component in high-frequency multivariate volatility models)

  • 진민경;윤재은;황선영
    • 응용통계연구
    • /
    • 제30권5호
    • /
    • pp.747-757
    • /
    • 2017
  • 본 논문은 다변량 실현 변동성 계산에서 주기 선택 방안에 대해 연구하고 있다. 고빈도(high frequency) 시계열 자료에 기초한 일간 변동성인 실현변동성을 계산하고 차원 축소 방법인 주성분을 도입하였다. Cholesky 모형을 포함한 다양한 다변량 변동성모형을 주성분을 통해 비교하였으며 KOSPI/삼성전자/현대차 고빈도 수익률 자료를 이용하여 예시하였다.

Analyzing Operation Deviation in the Deasphalting Process Using Multivariate Statistics Analysis Method

  • Park, Joo-Hwang;Kim, Jong-Soo;Kim, Tai-Suk
    • 한국멀티미디어학회논문지
    • /
    • 제17권7호
    • /
    • pp.858-865
    • /
    • 2014
  • In the case of system like MES, various sensors collect the data in real time and save it as a big data to monitor the process. However, if there is big data mining in distributed computing system, whole processing process can be improved. In this paper, system to analyze the cause of operation deviation was built using the big data which has been collected from deasphalting process at the two different plants. By applying multivariate statistical analysis to the big data which has been collected through MES(Manufacturing Execution System), main cause of operation deviation was analyzed. We present the example of analyzing the operation deviation of deasphalting process using the big data which collected from MES by using multivariate statistics analysis method. As a result of regression analysis of the forward stepwise method, regression equation has been found which can explain 52% increase of performance compare to existing model. Through this suggested method, the existing petrochemical process can be replaced which is manual analysis method and has the risk of being subjective according to the tester. The new method can provide the objective analysis method based on numbers and statistic.