• 제목/요약/키워드: Multivariate Statistical Methods

검색결과 463건 처리시간 0.021초

Development of Multivariate Analysis System by Using SAS/AF and SCL

  • Han, Sang-Tae;Kang, Hyuncheol;Lee, Seong-Keon;Jang, Myung-Seok;Lee, Duck-Ki;Ryu, Dong-Kyun
    • Communications for Statistical Applications and Methods
    • /
    • 제8권2호
    • /
    • pp.507-514
    • /
    • 2001
  • In recent years, the development and the embodiment of information analysis system has been sprightly carried out in several fields of study. In this study, as and extension of these studies, we develop a system for multivariate analysis which might be widely used in social and natural sciences. This multivariate analysis system is developed by using multivariate analysis procedures in SAS/STAT software. Also, the system supply users with he environment of GUI(Graphical User Interface), which is constructed with AF(application frame) and SCL(screen control language) of SAS software, in order to help users to use the system with easy.

  • PDF

Multivariate measures of skewness for the scale mixtures of skew-normal distributions

  • Kim, Hyoung-Moon;Zhao, Jun
    • Communications for Statistical Applications and Methods
    • /
    • 제25권2호
    • /
    • pp.109-130
    • /
    • 2018
  • Several measures of multivariate skewness for scale mixtures of skew-normal distributions are derived. As a special case, those of multivariate skew-t distribution are considered in detail. Furthermore, the similarities, differences, and behavior of these measures are explored for cases of some specific members of the multivariate skew-normal and skew-t distributions using a simulation study. Since some measures are vectors, it is better to take all measures in the same scale when comparing them. In order to attain such a set of comparable indices, the sample version is considered for each of the skewness measures that are taken as test statistics for the hypothesis of t distribution against skew-t distribution. An application is reported for the data set consisting of 71 total glycerol and magnesium contents in Grignolino wine.

Bayesian Analysis of a New Skewed Multivariate Probit for Correlated Binary Response Data

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제30권4호
    • /
    • pp.613-635
    • /
    • 2001
  • This paper proposes a skewed multivariate probit model for analyzing a correlated binary response data with covariates. The proposed model is formulated by introducing an asymmetric link based upon a skewed multivariate normal distribution. The model connected to the asymmetric multivariate link, allows for flexible modeling of the correlation structure among binary responses and straightforward interpretation of the parameters. However, complex likelihood function of the model prevents us from fitting and analyzing the model analytically. Simulation-based Bayesian inference methodologies are provided to overcome the problem. We examine the suggested methods through two data sets in order to demonstrate their performances.

  • PDF

A Jarque-Bera type test for multivariate normality based on second-power skewness and kurtosis

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • 제28권5호
    • /
    • pp.463-475
    • /
    • 2021
  • Desgagné and de Micheaux (2018) proposed an alternative univariate normality test to the Jarque-Bera test. The proposed statistic is based on the sample second power skewness and kurtosis while the Jarque-Bera statistic uses sample Pearson's skewness and kurtosis that are the third and fourth standardized sample moments, respectively. In this paper, we generalize their statistic to a multivariate version based on orthogonalization or an empirical standardization of data. The proposed multivariate statistic follows chi-squared distribution approximately. A simulation study shows that the proposed statistic has good control of type I error even for a very small sample size when critical values from the approximate distribution are used. It has comparable power to the multivariate version of the Jarque-Bera test with exactly the same idea of the orthogonalization. It also shows much better power for some mixed normal alternatives.

Bearing fault detection through multiscale wavelet scalogram-based SPC

  • Jung, Uk;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.377-395
    • /
    • 2014
  • Vibration-based fault detection and condition monitoring of rotating machinery, using statistical process control (SPC) combined with statistical pattern recognition methodology, has been widely investigated by many researchers. In particular, the discrete wavelet transform (DWT) is considered as a powerful tool for feature extraction in detecting fault on rotating machinery. Although DWT significantly reduces the dimensionality of the data, the number of retained wavelet features can still be significantly large. Then, the use of standard multivariate SPC techniques is not advised, because the sample covariance matrix is likely to be singular, so that the common multivariate statistics cannot be calculated. Even though many feature-based SPC methods have been introduced to tackle this deficiency, most methods require a parametric distributional assumption that restricts their feasibility to specific problems of process control, and thus limit their application. This study proposes a nonparametric multivariate control chart method, based on multiscale wavelet scalogram (MWS) features, that overcomes the limitation posed by the parametric assumption in existing SPC methods. The presented approach takes advantage of multi-resolution analysis using DWT, and obtains MWS features with significantly low dimensionality. We calculate Hotelling's $T^2$-type monitoring statistic using MWS, which has enough damage-discrimination ability. A bootstrap approach is used to determine the upper control limit of the monitoring statistic, without any distributional assumption. Numerical simulations demonstrate the performance of the proposed control charting method, under various damage-level scenarios for a bearing system.

MBRDR: R-package for response dimension reduction in multivariate regression

  • Heesung Ahn;Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • 제31권2호
    • /
    • pp.179-189
    • /
    • 2024
  • In multivariate regression with a high-dimensional response Y ∈ ℝr and a relatively low-dimensional predictor X ∈ ℝp (where r ≥ 2), the statistical analysis of such data presents significant challenges due to the exponential increase in the number of parameters as the dimension of the response grows. Most existing dimension reduction techniques primarily focus on reducing the dimension of the predictors (X), not the dimension of the response variable (Y). Yoo and Cook (2008) introduced a response dimension reduction method that preserves information about the conditional mean E(Y | X). Building upon this foundational work, Yoo (2018) proposed two semi-parametric methods, principal response reduction (PRR) and principal fitted response reduction (PFRR), then expanded these methods to unstructured principal fitted response reduction (UPFRR) (Yoo, 2019). This paper reviews these four response dimension reduction methodologies mentioned above. In addition, it introduces the implementation of the mbrdr package in R. The mbrdr is a unique tool in the R community, as it is specifically designed for response dimension reduction, setting it apart from existing dimension reduction packages that focus solely on predictors.

Note on response dimension reduction for multivariate regression

  • Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • 제26권5호
    • /
    • pp.519-526
    • /
    • 2019
  • Response dimension reduction in a sufficient dimension reduction (SDR) context has been widely ignored until Yoo and Cook (Computational Statistics and Data Analysis, 53, 334-343, 2008) founded theories for it and developed an estimation approach. Recent research in SDR shows that a semi-parametric approach can outperform conventional non-parametric SDR methods. Yoo (Statistics: A Journal of Theoretical and Applied Statistics, 52, 409-425, 2018) developed a semi-parametric approach for response reduction in Yoo and Cook (2008) context, and Yoo (Journal of the Korean Statistical Society, 2019) completes the semi-parametric approach by proposing an unstructured method. This paper theoretically discusses and provides insightful remarks on three versions of semi-parametric approaches that can be useful for statistical practitioners. It is also possible to avoid numerical instability by presenting the results for an orthogonal transformation of the response variables.

A Comparison Study of Multivariate Binary and Continuous Outcomes

  • Pak, Dae-Woo;Cho, Hyung-Jun
    • 응용통계연구
    • /
    • 제25권4호
    • /
    • pp.605-612
    • /
    • 2012
  • Multivariate data are often generated with multiple outcomes in various fields. Multiple outcomes could be mixed as continuous and discrete. Because of their complexity, the data are often dealt with by separately applying regression analysis to each outcome even though they are associated the each other. This univariate approach results in the low efficiency of estimates for parameters. We study the efficiency gains of the multivariate approaches relative to the univariate approach with the mixed data that include continuous and binary outcomes. All approaches yield consistent estimates for parameters with complete data. By jointly estimating parameters using multivariate methods, it is generally possible to obtain more accurate estimates for parameters than by a univariate approach. The association between continuous and binary outcomes creates a gap in efficiency between multivariate and univariate approaches. We provide a guidance to analyze the mixed data.

A rolling analysis on the prediction of value at risk with multivariate GARCH and copula

  • Bai, Yang;Dang, Yibo;Park, Cheolwoo;Lee, Taewook
    • Communications for Statistical Applications and Methods
    • /
    • 제25권6호
    • /
    • pp.605-618
    • /
    • 2018
  • Risk management has been a crucial part of the daily operations of the financial industry over the past two decades. Value at Risk (VaR), a quantitative measure introduced by JP Morgan in 1995, is the most popular and simplest quantitative measure of risk. VaR has been widely applied to the risk evaluation over all types of financial activities, including portfolio management and asset allocation. This paper uses the implementations of multivariate GARCH models and copula methods to illustrate the performance of a one-day-ahead VaR prediction modeling process for high-dimensional portfolios. Many factors, such as the interaction among included assets, are included in the modeling process. Additionally, empirical data analyses and backtesting results are demonstrated through a rolling analysis, which help capture the instability of parameter estimates. We find that our way of modeling is relatively robust and flexible.

A Weak Positive Orthant Dependence Concept

  • Hye-Young Seo;Tae-Sung Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제5권1호
    • /
    • pp.193-203
    • /
    • 1998
  • In this paper, we introduce a new concept of the multivariate positive dependence. This concept is weaker than the positive orthant dependence. Some basic properties and preservation results are presented.

  • PDF