Purpose: The purpose of this study is to identify immunohistochemical evidence of lymph-node micrometastasis in histologic node-negative gastric cancer patients and to evaluate the prognostic significance of lymph-node micrometastasis.Materials and Methods: A retrospective study of 50 gastric cancer patients who underwent curative resections from October 1990 to November 1994 was performed. Two consecutive sections were prepared: one for ordinary hematoxylin and eosin staining, and the other for immunohistochemical staining with Pan cytokeratin antibody (Novocastra, UK). In the univariate analysis, the survival rate was calculated using the Life Table Method, and the multivariate analysis was determined using a Cox Proportional HazardsModel. The statistical analyses of the relationships between the clinicopathologic factors and micrometastases were performed by using a Chi-square test. Results: Of 2522 harvested lymph nodes, 81 ($4.1\%$) nodes and 19 ($38\%$) of 50 patients were identified as having lymphnode micrometastases by using immunohistochemical staining for cytokeratin. The incidence of lymph-node micrometastases was significantly higher in diffuse type carcinomas ($54\%$, P=0.024) and in patients with serosal invasion ($52.2\%$, P=0.05). For patients with lymph-node micrometastases (n=19), the 5-year survival rate was significantly decreased ($73.7\%$, P=0.015). The Lauren's classirication (P=0.021) and the depth of invasion (P=0.035) were shown by multivariate analysis to have a significant relationship with the presence of micrometastases. Multivariate analysis revealed that lymph-node micrometastasis was independently correlated with survival in histologic node-negative gastic cancer patients. Conclusion: The presence of cytokeratin detected lymphnode micrometastases correlates with the worse prognosis for patients with histologic node-negative gastric cancer.
Communications for Statistical Applications and Methods
/
v.19
no.3
/
pp.345-358
/
2012
In a parametric sample selection model, the distribution assumption is critical to obtain consistent estimates. Conventionally, the normality assumption has been adopted for both error terms in selection and main equations of the model. The normality assumption, however, may excessively restrict the true underlying distribution of the model. This study introduces the $S_U$-normal distribution into the error distribution of a sample selection model. The $S_U$-normal distribution can accommodate a wide range of skewness and kurtosis compared to the normal distribution. It also includes the normal distribution as a limiting distribution. Moreover, the $S_U$-normal distribution can be easily extended to multivariate dimensions. We provide the log-likelihood function and expected value formula based on a bivariate $S_U$-normal distribution in a sample selection model. The results of simulations indicate the $S_U$-normal model outperforms the normal model for the consistency of estimators. As an empirical application, we provide the sample selection model for car ownership and a car expense relationship.
Objectives: The objective of this study was to build COD regression models for the Han River and evaluate water quality. Methods: Water quality data sets for the dry season (as of January) during a four-year period (2012-2015) were collected from the database of the Han River automatic water quality monitoring stations. Statistical techniques, including combined genetic algorithm-multiple linear regression (GA-MLR) were used to build five-descriptor COD models. Multivariate statistical techniques such as principal component analysis (PCA) and cluster analysis (CA) are useful tools for extracting meaningful information. Results: The $r^2$ of the best COD models provided significant high values (> 0.8) between 2012 and 2015. Total organic carbon (TOC) was a surrogate indicator for COD (as COD/TOC) with high reliability ($r^2=0.63$ in 2012, $r^2=0.75$ for 2013, $r^2=0.79$ for 2014 and $r^2=0.85$ for 2015). The ratios of COD/TOC were calculated as 2.08 in 2012, 1.79 in 2013, 1.52 and 1.45 in 2015, indicating that biodegradability in the water body of the Han River was being sustained, thereby further improving water quality. The BOD/COD ratio supported these findings. The cluster analysis revealed higher annual levels of microorganisms and phosphorous at stations along the Hangang-Seoul and Hantangang areas. Nevertheless, the overall water quality over the last four years showed an observable trend toward continuous improvement. These findings also suggest that non-point pollution control strategies should consider the influence of upstreams and downstreams to protect water quality in the Han River. Conclusion: This data analysis procedure provided an efficient and comprehensive tool to interpret complex water quality data matrices. Results from a trend analysis provided much important information about sources and parameters for Han River water quality management.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1245-1245
/
2001
Food adulteration is a serious consumer fraud and a matter of concern to food processors and regulatory agencies. A range of analytical methods have been investigated to facilitate the detection of adulterated or mis-labelled foods & food ingredients but most of these require sophisticated equipment, highly-qualified staff and are time-consuming. Regulatory authorities and the food industry require a screening technique which will facilitate fast and relatively inexpensive monitoring of food products with a high level of accuracy. Near infrared spectroscopy has been investigated for its potential in a number of authenticity issues including meat speciation (McElhinney, Downey & Fearn (1999) JNIRS, 7(3), 145-154; Downey, McElhinney & Fearn (2000). Appl. Spectrosc. 54(6), 894-899). This report describes further analysis of these spectral sets using a hierarchical approach and binary decisions solved using logistic regression. The sample set comprised 230 homogenized meat samples i. e. chicken (55), turkey (54), pork (55), beef (32) and lamb (34) purchased locally as whole cuts of meat over a 10-12 week period. NIR reflectance spectra were recorded over the wavelength range 400-2498nm at 2nm intervals on a NIR Systems 6500 scanning monochromator. The problem was defined as a series of binary decisions i. e. is the meat red or white\ulcorner is the red meat beef or lamb\ulcorner, is the white meat pork or poultry\ulcorner etc. Each of these decisions was made using an individual binary logistic model based on scores derived from principal component or partial least squares (PLS1 and PLS2) analysis. The results obtained were equal to or better than previous reports using factorial discriminant analysis, K-nearest neighbours and PLS2 regression. This new approach using a combination of exploratory and logistic analyses also appears to have advantages of transparency and the use of inherent structure in the spectral data. Additionally, it allows for the use of different data transforms and multivariate regression techniques at each decision step.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1152-1152
/
2001
Food adulteration is a serious consumer fraud and a matter of concern to food processors and regulatory agencies. A range of analytical methods have been investigated to facilitate the detection of adulterated or mis-labelled foods & food ingredients but most of these require sophisticated equipment, highly-qualified staff and are time-consuming. Regulatory authorities and the food industry require a screening technique which will facilitate fast and relatively inexpensive monitoring of food products with a high level of accuracy. Near infrared spectroscopy has been investigated for its potential in a number of authenticity issues including meat speciation (McElhinney, Downey & Fearn (1999) JNIRS, 7(3), 145 154; Downey, McElhinney & Fearn (2000). Appl. Spectrosc. 54(6), 894-899). This report describes further analysis of these spectral sets using a hierarchical approach and binary decisions solved using logistic regression. The sample set comprised 230 homogenized meat samples i. e. chicken (55), turkey (54), pork (55), beef (32) and lamb (34) purchased locally as whole cuts of meat over a 10-12 week period. NIR reflectance spectra were recorded over the wavelength range 400-2498nm at 2nm intervals on a NIR Systems 6500 scanning monochromator. The problem was defined as a series of binary decisions i. e. is the meat red or white\ulcorner is the red meat beef or lamb\ulcorner, is the white meat pork or poultry\ulcorner etc. Each of these decisions was made using an individual binary logistic model based on scores derived from principal component or partial least squares (PLS1 and PLS2) analysis. The results obtained were equal to or better than previous reports using factorial discriminant analysis, K-nearest neighbours and PLS2 regression. This new approach using a combination of exploratory and logistic analyses also appears to have advantages of transparency and the use of inherent structure in the spectral data. Additionally, it allows for the use of different data transforms and multivariate regression techniques at each decision step.
The power function in sample size determination has to be characterized by an appropriate statistical test for the hypothesis of interest. Nonparametric tests are suitable in the analysis of ordinal data or frequency data with ordered categories which appear frequently in the biomedical research literature. In this paper, we study sample size calculation methods for the Wilcoxon-Mann-Whitney test for one- and two-dimensional ordinal outcomes. While the sample size formula for the univariate outcome which is based on the variances of the test statistic under both null and alternative hypothesis perform well, this formula requires additional information on probability estimates that appear in the variance of the test statistic under alternative hypothesis, and the values of these probabilities are generally unknown. We study the advantages and disadvantages of different sample size formulas with simulations. Sample sizes are calculated for the two-dimensional ordinal outcomes of efficacy and safety, for which bivariate Wilcoxon-Mann-Whitney test is appropriate than the multivariate parametric test.
Sung D.;Kim J.;Jung W.;Lee S.;Cheung W.;Lim J.;Chung K.
Journal of the Korean Vacuum Society
/
v.15
no.4
/
pp.338-346
/
2006
In semiconductor process, it is so hard to predict an exact failure point of the vacuum pump due to its harsh operation conditions and nonlinear properties, which may causes many problems, such as production of inferior goods or waste of unnecessary materials. Therefore it is very urgent and serious problem to develop diagnostic models which can monitor the operation conditions appropriately and recognize the failure point exactly, indicating when to replace the vacuum pump. In this study, many influencing factors are totally considered and eventually the monitoring model using multivariate statistical methods is suggested. The pivotal algorithms are Multiway Principal Component Analysis(MPCA), Dynamic Time Warping Algorithm(DTW Algorithm), etc.
Background: The objective of this study was to examine the effect of occurrence and reoccurrence of catastrophic health expenditure (CHE) on transition to poverty and persistence of poverty in South Korea. Methods: The data of the year 2008-2011 from the Korea Health Panel were used. CHE was defined as the share of total health expenditure in a household out of a household's total income at various threshold levels (more than 5%, 10%, 15%, and 20%). The effect of catastrophic expenditure on transition to poverty and persistence of poverty was analyzed through multivariate logistic regression. Results: The shares of households facing CHE at various threshold levels have increased gradually with 37.7%, 21%, 13.1%, and 9.5% in 2011. Households facing CHE were more likely to experience transition to poverty at thresholds level of more than 5% and 20% in 2010 set. Households facing CHE seemed to experience persistence of poverty, but it was not statistically significant. About 40% of households facing CHE in 2009 encountered another shock of CHE in 2010. Households without CHE seemed to experience more transition to poverty and persistence of poverty, but it was not statistically significant. For household with multiple CHE, those with medical aid were more likely to experience transition to poverty with statistical significance, but the statistical significance disappeared in case of persistence of poverty. Conclusion: The Korean health system needs to be improved to serve as a social security net for addressing transition to poverty and persistence of poverty due to facing CHE.
Fault detection of cycle-based signals is typically performed using statistical approaches. Univariate SPC using few representative statistics and multivariate analysis methods such as PCA and PLS are the most popular methods for analyzing cycle-based signals. However, such approaches are limited when dealing with information-rich cycle-based signals. In this paper, process fault defection method based on wavelet analysis is proposed. Using Haar wavelet, coefficients that well reflect the process condition are selected. Next, Hotelling's $T^2$ chart using selected coefficients is constructed for assessment of process condition. To enhance the overall efficiency of fault detection, the following two steps are suggested, i.e. denoising method based on wavelet transform and coefficient selection methods using variance difference. For performance evaluation, various types of abnormal process conditions are simulated and the proposed algorithm is compared with other methodologies.
Proceedings of the Korean Society of Crop Science Conference
/
2017.06a
/
pp.14-14
/
2017
The discipline of plant breeding is experiencing a renaissance impacting crop improvement as a result of new technologies, however fundamental questions remain for predicting the phenotype and how the environment and genetics shape it. Inexpensive DNA sequencing, genotyping, new statistical methods, high throughput phenotyping and gene-editing are revolutionizing breeding methods and strategies for improving both quantitative and qualitative traits. Genomic selection (GS) models use genome-wide markers to predict performance for both phenotyped and non-phenotyped individuals. Aerial and ground imaging systems generate data on correlated traits such as canopy temperature and normalized difference vegetative index that can be combined with genotypes in multivariate models to further increase prediction accuracy and reduce the cost of advanced trials with limited replication in time and space. Design of a GS training population is crucial to the accuracy of prediction models and can be affected by many factors including population structure and composition. Prediction models can incorporate performance over multiple environments and assess GxE effects to identify a highly predictive subset of environments. We have developed a methodology for analyzing unbalanced datasets using genome-wide marker effects to group environments and identify outlier environments. Environmental covariates can be identified using a crop model and used in a GS model to predict GxE in unobserved environments and to predict performance in climate change scenarios. These new tools and knowledge challenge the plant breeder to ask the right questions and choose the tools that are appropriate for their crop and target traits. Contemporary plant breeding requires teams of people with expertise in genetics, phenotyping and statistics to improve efficiency and increase prediction accuracy in terms of genotypes, experimental design and environment sampling.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.