• Title/Summary/Keyword: Multivariate B-splines

Search Result 4, Processing Time 0.022 seconds

THE COMPUTATION OF MULTIVARIATE B-SPLINES WITH APPLICATION TO SURFACE APPROXIMATIONS

  • KIM, HOI SUB
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.81-98
    • /
    • 1999
  • In spite of the well developed theory and the practical use of the univariate B-spline, the theory of multivariate B-spline is very new and waits its practical use. We compare in this article the multivariate B-spline approximation with the polynomial approximation for the surface fitting. The graphical and numerical comparisons show that the multivariate B-spline approximation gives much better fitting than the polynomial one, especially for the surfaces which vary very rapidly.

  • PDF

An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils

  • Luat, Nguyen-Vu;Nguyen, Van-Quang;Lee, Seunghye;Woo, Sungwoo;Lee, Kihak
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.583-598
    • /
    • 2020
  • This study is attempted to propose a new hybrid artificial intelligence model called integrative genetic algorithm with multivariate adaptive regression splines (GA-MARS) for settlement prediction of shallow foundations on sandy soils. In this hybrid model, the evolution algorithm - Genetic Algorithm (GA) was used to search and optimize the hyperparameters of multivariate adaptive regression splines (MARS). For this purpose, a total of 180 experimental data were collected and analyzed from available researches with five-input variables including the bread of foundation (B), length to width (L/B), embedment ratio (Df/B), foundation net applied pressure (qnet), and average SPT blow count (NSPT). In further analysis, a new explicit formulation was derived from MARS and its accuracy was compared with four available formulae. The attained results indicated that the proposed GA-MARS model exhibited a more robust and better performance than the available methods.

Application of Spectral Properties of Basic Splines in Problems of Processing of Multivariate Signals

  • Zaynidinov, H.N.;Yun, Tae-Soo;Chae, Eel-Jin
    • International Journal of Contents
    • /
    • v.3 no.4
    • /
    • pp.26-29
    • /
    • 2007
  • The paper is devoted to problem of spline approximation. A new method of nodes location for curves and surfaces computer construction in multidimensional spaces by means of B-splines is presented. The criteria are which links a square-mean error caused by high frequency spline distortions and approximation intervals is determined and necessary theorem is proved. In this method use a theory of entire multidimensional spectra and may be extended for the spaces of three, four and more variables. Future work: application area such as digital contents like animation, game graphic.

GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading

  • Luat, Nguyen-Vu;Lee, Jaehong;Lee, Do Hyung;Lee, Kihak
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • This study presents applications of the multivariate adaptive regression splines (MARS) method for predicting the ultimate loading carrying capacity (Nu) of rectangular concrete-filled steel tubular (CFST) columns subjected to eccentric loading. A database containing 141 experimental data was collected from available literature to develop the MARS model with a total of seven variables that covered various geometrical and material properties including the width of rectangular steel tube (B), the depth of rectangular steel tube (H), the wall thickness of steel tube (t), the length of column (L), cylinder compressive strength of concrete (f'c), yield strength of steel (fy), and the load eccentricity (e). The proposed model is a combination of the MARS algorithm and the grid search cross-validation technique (abbreviated here as GS-MARS) in order to determine MARS' parameters. A new explicit formulation was derived from MARS for the mentioned input variables. The GS-MARS estimation accuracy was compared with four available mathematical methods presented in the current design codes, including AISC, ACI-318, AS, and Eurocode 4. The results in terms of criteria indices indicated that the MARS model was much better than the available formulae.