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Abstract

In spite of the well developed theory and the practical use of the uni-

variate B-spline, the theory of multivariate B-spline is very new and waits

its practical use. We compare in this article the multivariate B-spline ap-

proximation with the polynomial approximation for the surface �tting. The

graphical and numerical comparisons show that the multivariate B-spline

approximation gives much better �tting than the polynomial one, especially

for the surfaces which vary very rapidly.

1. Introduction

The theory of univariate spline is well developed and widely used in one dimensional

data �tting or curve �tting. The possibility of the theory of multivariate B-spline

was �rst noted by C. de Boor in [6]. The theory has been developed since then by

C.A.Micchelli, W.Dahmen and others in a series of papers [3],[12],[13],� � � etc, but its

application cannot be seen in the literature and in practice.

In this paper we consider the data �tting or surface �tting by the bivariate B-spline in

the least squares sense and compare with the polynomial approximations. Our graph-

ical and numerical results show that the bivariate B-spline approximation gives much

better �tting than the polynomial one (see x6). We used the computer HP-9000 for the

graphical representations of approximated surfaces and the calculations of errors.

In x2, we review the univariate spline and the basic properties of multivariate B-

spline. In x3,x4, we describe a spline space which is needed for least squares approx-

imation and the least squares method. The information needed to approximate data

are given. In x5,x6, we describe our approximation schemes and compare each other for

the test functions by means of visual representations and numerical errors. The anal-

ysis and conclusion are given. We give some graphs of basis functions of multivariate

B-spline.

For convenience, let us �x some notations to be used throughout paper. The ele-

ments of the Euclidean space Rs; s � 1; are denoted by x,z,� � � . The superscripts will

be used to enumerate vectors xj ; j = 1; 2; � � � . We will denote by xi or x
j

i
, the i-th com-

ponent of x, xj, respectively. We set x� = x�1 � � � x�s . j�j = �1 + � � � + �s. In addition

1991 Mathematics Subject Classi�cation. Primary 65D17, 65D07.

Key words and phrases. Multivariate B-splines, Least squares method.

81



82 HOI SUB KIM

vols(A); XA(x), [A]; jAj denote the s-dimensional volume, the indicator function, the

convex hull and the cardinality of a given set A, respectively.

2. The multivariate B-spline

Let t0; � � � ; tn be any real numbers. Then [t0; � � � ; tn]g will denote the divided dif-

ference of g at t0; � � � ; tn. For the distinct points t0; � � � ; tn the divided di�erence

[t0; � � � ; tn]g is given by the formula

[t0; � � � ; tn]g =

nX
j=0

g(tj)Q
i6=j(tj � ti)

(2.1)

One way to de�ne the univariate B-splineM(tjt0; � � � ; tn) is by means of the formula,[1],

M(tjt0; � � � ; tn) = n![t0; � � � ; tn](� � t)n�1+ ;(2.2)

where the truncated function (� � t)+ is de�ned as

(x� t)+ =

�
x� t; x > t

0; otherwise:

As the n-th order divided di�erence of an n-th order truncated power, the univariate B-

splineM(tjt0; � � � ; tn) can be seen to be a nonnegative piecewise polynomial of degree n-

1 supported on [t0; tn]. If the knots t0; � � � ; tn are distinct, then by (2:1) M(tjt0; � � � ; tn)

has an explicit form

M(tjt0; � � � ; tn) = n!

nX
j=0

(tj � t)n�1+Q
i6=j(tj � ti)

(2.3)

Although (2.3) may be used to evaluate the B-spline, the following recurrence relation

is preferred for its numerical stability and e�ciency in computation:

M(tjt0; � � � ; tn) =

n

n� 1

�
tn � t

tn � t0
M(tjt1; � � � ; tn) +

t� t0

tn � t0
M(tjt0; � � � ; tn�1)

�(2.4)

This important formula is due to de Boor, Cox and Mans�eld [6]. According to the

following formula,[6],

d

dt
M(tjt0; � � � ; tn) =

n

tn � t0
(M(tjt0; � � � ; tn�1)�M(tjt1; � � � ; tn)) ;

(2.5)

the derivative of a B-spline can be computed in terms of lower order B-splines.

2.1. The de�nition of the multivariate B-spline.

Let Sn = f(�0; � � � ; �n) : �j � 0;
P

n

j=0 �j = 1g be the standard n-simplex. Let

t0; � � � ; tn be a knot sequence in the real line. Then the divided di�erence [t0; � � � ; tn]g

has the following Hermite-Gennochi formula:

[t0; � � � ; tn]g =

Z
Sn

g(n)(t0�0 + � � �+ tn�n)d�1 � � � d�n(2.6)
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provided that g is n times continuously di�erentiable, [13]. By (2.2) and (2.6) we haveZ 1

�1

g(t)M(tjt0; � � � ; tn)dt = n!

Z
Sn

g(t0�0 + � � �+ tn�n)d�1 � � � d�n;(2.7)

for any g 2 L1
loc
(R), the space of locally integrable functions on R. The formula (2.7)

is used to de�ne the s-dimensional B-spline.

Let K = fx0; � � � ; xng be any set of knots in Rs. We de�ne the s-variate B-spline

Mfxjx0; � � � ; xn), by requiring that the equationZ
Rs

f(x)M(xjx0; � � � ; xn)dx = n!

Z
Sn

f(�0x
0 + � � �+ �nx

n)d�1 � � � d�n(2.8)

holds for all f 2 L1
loc
(Rs), [12]. This de�nition requires vols([K]) > 0:

2.2. The geometric interpretation of s-variate B-spline.

Let � = [v0; � � � ; vn] be any n-simplex in Rnsuch that

vijRs = xi; i = 0; � � � ; n:(2.9)

We de�ne the density function

M�(x) = voln�s(fu 2 � : ujRs = xg); x 2 Rs:(2.10)

An elementary calculation yieldsZ
Rs

f(x)M�(x)dx = n!voln�

Z
Sn

f(�0v
0 + � � �+ �nv

n
jRs)d�1 � � � d�n:(2.11)

If we compare (2.8) and (2.11), we have

M(xjx0; � � � ; xn) =M�(x)=voln�(2.12)

As an example we consider the case s = 1; n = 2 :

In Fig. 1, we have lifted x0; x1; x2 into the plane forming the triangle T. The B-spline

evaluated at t is

M(tjx0; x1; x2) =
length L

area T
:(2.13)
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The right hand side of (2.12) is independent of �; subject only to the condition (2.9).

The formula (2.12) is certainly of no help for the calculation of M except for the case

n = s where we have

M(xjx0; � � � ; xs) = X [x0; � � � ; xs](x)=vols([x
0; � � � ; xs]):(2.14)

The formulas (2.8) and (2.10) show that m is nonnegative and zero outside of [x0; � � � ; xn].

Since M(xjx0; � � � ; xn) is independent of the ordering of the vectors x0; � � � ; xn,[13], we

sometimes use the alternate notation M(xjK) where K = fx0; � � � ; xng.

2.3. A recurrence relation for the multivariate B-spline.

A practical computation of the B-spline is facilitated by the following recurrence

relation. For n � s+ 1 and vols([x
0; � � � ; xn]) > 0, we have ([3],[12])

M(xjx0; � � � ; xn) =
n

n� s

nX
j=0

�jM(xjx0; � � � ; xj�1; xj+1; � � � ; xn)(2.15)

whenever

x =

nX
j=0

�jx
j ;

nX
j=0

�j = 1:(2.16)

The �j
0s are not uniquely determined but one possible choice is as follows. For x 2

[x0; � � � ; xn], choose an (s + 1) a�nely independent knots xi0 ; � � � ; xis so that x 2

[xi0 ; � � � ; xis ] ,(possible by Caratheodory theorem) and choose �j as the barycentric

coordinates. That is,

�ij (xjx
i0 ; � � � ; xis) =

det

�
xi0 ; � � � ; xij�1 ; x; xij+1 ; � � � ; xis

1; � � � ; 1; 1; 1; � � � ; 1

�

det

�
xi0 ; � � � ; xis

1; � � � ; 1

�

where

det

�
x0; � � � ; xs

1; � � � ; 1

�
=

���������

x01; � � � ; xs1
...

...

x0s; � � � ; xss
1; � � � ; 1

���������
For m 6= ij , we see �m = 0 so that (2.16) is satis�ed. The univariate formula (2.3)

corresponds to the choice s = 1; i0 = 0; is = n:

2.4. Continuity of B-spline.

There is also a multivariate version of formula (2.5) expressing any directional deriv-

ative of a B-spline as a linear combination of lower-order B-splines. If Dy =
P

s

i=1 yi
@

@xi
,

then one has , [13],

DyM(xjx0; � � � ; xn) =

nX
j=0

�jM(xjx0; � � � ; xj�1; xj+1; � � � ; xn);(2.17)
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whenever

y =

nX
j=0

�jxj ;

nX
j=0

�j = 0:(2.18)

As before we can pick any a�nely independent knots xi0 ; � � � ; xis and set

�m =

�
Dy�m(xjx

i0 ; � � � ; xis) ;m = ij ; j = 0; � � � ; s;

0 ; otherwise;

where �m is as in (2.15) . It is easy to verify that the coe�cients �m satisfy (2.18)

so that the sum on the right hand side of (2.17) has at most s + 1 nonzero terms.

For s = 1, the choice i0 = 0; is = n gives the univariate formula (2.5) . There are a

few noteworthy consequences of the relations (2.15) and (2.17). Both formulas readily

show that M(xjx0; � � � ; xn) is indeed a piecewise polynomial in each region which is

bounded by but not intersected by the (s� 1) simplex by any s of its knots. Repeated

applications of (2.5) show that

M(xjx0; � � � ; xn) 2 Cn�d(Rs);

provided the convex hull of every subset of d knots taken from fx0; � � � ; xng has nonvan-

ishing s-dimensional volume. Ck denotes the class of k times continuously di�erentiable

functions in Rs(k � 0) and C�1 the class of all piecewise continuous functions in Rs.

In particular, if the knots are in general position, then the B-spline is in Cn�s�1.

Let us mention that in the extreme case where there are only s + 1 distinct knots,

say xj; j = 0; � � � ; s; each repeated with multiplicities mj + 1. M(xjx0; � � � ; xn) is a

polynomial on the simplex [x0; � � � ; xn] = [x0; � � � ; xs]. Moreover, one can show that it

is given explicitly by

M(xjx0; � � � ; xn) =
X [x0; � � � ; xn](x)

vols([x0; � � � ; xn])

(�0(x))
m0

m0!
� � �

(�s(x))
ms

ms!
;

where

�j(x) = �j(xjx
0; � � � ; xs); j = 0; � � � ; s;

x = �0(x)x
0 + � � �+ �s(x)x

s;

�0(x) + � � � + �s(x) = 1:

3. A spline space

Let T be a triangulation of 
 � Rs, [5]. That is , T is a collection of s-simplices

such that the intersection of any two elements of T is either empty or a common

lower dimensional simplex . Let 
 be any polyhedral set in Rs and suppose that

K0 = fxi;0 : i = 1; � � � ; Ng is any set of distinct vectors in 
. Furthermore we let

T be any triangulation of 
 so that K0 is the set of vertices of the simplices in T. A

typical simplex in T has the form �� = [x�0;0; � � � ; x�s;0]; 1 � �0 < � � � < �s � N where

� = (�0; � � � ; �s) and we index all such simplices by a set J 2 Zs+1
+ ; that is,

T = f�� : � 2 Jg:(3.1)

As an example,let 
 and K0 be as follows:

K0 = fxi;0 : i = 1; � � � ; 6g; J = f(1; 2; 3); (2; 3; 5); (3; 4; 5); (4; 5; 6)g:
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 :

x1;0

�(1;2;3)

x2;0 x5;0
x6;0

x3;0 x4;0

Figure 2

x1;0

x1;1

x1;2

x2;2

x5;1

x5:2

x6;1

x6;2

x3;1 = x3;2 x4;2

x1;0x1;0

�(1;2;3)

x2;0 = x2;1 x5;0
x6;0

x3;0 x4;0 = x4;1

Figure 3

If �(1; 2; 3) is the 2-simplex formed by x1;0; x2;0; x3;0, say, then T = U�2J��.

In order to construct a spline space of degree k on 
, we extend the list of vectors

in K0 to form Ke = fxi;j : i = 1; � � � ; N; j = 0; � � � ; kg by adding k additional vectors

xi;j ; j = 1; � � � ,k corresponding to each xi;0. We usually choose the vectors xi;1; � � � ; xi;k

as either being equal to or near xi;0.Thus we might have, for example s = 2 and k = 2

an extended collection of vectors as in Fig. 3.

We will now describe a method of grouping the vectors in Ke into knot sets having

cardinality n + 1 = s + k + 1. This will be done by forming groups of vectors from

the extended set which corresponds to each simplex �� in the triangulation T. For this

purpose we de�ne, for any s,k,

�(s; k) = fY = f(i0;m0); � � � ; (in;mn)g; Y � f0; � � � ; sg � f0; � � � ; kg;

i0 = m0 = 0; (ij ;mj) � (ij+i;mj+1); j = 0; 1; � � � ; n� 1g :

It is easy to show that

j�(s; k)j =

�
s+ k

s

�
:
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1

2

3

Figure 4

The set �(s; k) has the following obvious interpretation. Every set Y 2 �(s; k) can

be identi�ed with a nondescending path along grid lines formed by the lattice points

(i;m); 0 � i � s; 0 � m � k; which starts at (0; 0) and terminates at (s; k).

For instance, when s = 4 and k = 3 the dots in Fig. 4 indicate a typical set

Y in �(4; 3) Now with each � = f�0; � � � ; �sg 2 J we associate the local knot set

con�guration

K� = fK = fx(�l;m) : (l;m) 2 Y g : Y 2 �(s; k)g:

Referring to Fig. 3 where s = k = 2, we obtain

�(2; 2) =8<
:
f(0:0); (1; 0); (2; 0); (2; 1); (2; 2)g; f(0; 0); (1; 0); (1; 1); (2; 1); (2; 2)g;

f(0:0); (1; 0); (1; 1); (1; 2); (2; 2)g; f(0; 0); (0; 1); (1; 1); (2; 1); (2; 2)g;

f(0:0); (0; 1); (1; 1); (1; 2); (2; 2)g; f(0; 0); (0; 1); (0; 2); (1; 2); (2; 2)g

9=
; :

For � = (2; 3; 5), for example, we obtain the local knot set con�guration

K� =

8<
:
fx2;0; x3;0; x5;0; x5;1; x5;2g; fx2;0; x3;0; x3;1; x5;1; x5;2g;

fx2;0; x3;0; x3;1; x3;2; x5;2g; fx2;0; x2;1; x3;1; x5;1; x5;2g;

fx2;0; x2;1; x3;1; x3;2; x5;2g; fx2;0; x2;1; x2;2; x3;2; x5;2g

9=
; :

The global knot set con�gurations are then obtained by taking the union of all the local

knot set con�gurations

GK =
[
�2J

K� :(3.2)

Thus we have jGKj =
�
s+k
s

�
jJ j: We note that GK depends only on the numbering of

the vectors in GK and on the triangulation T. A spline space is given by S(GK) =

spanfM(xjK) : K 2 GKg:

4. The least squares approximation by multivariate B-splines

The following information is assumed to be prescribed:

a polyhedral set 
;

global knot set con�guration GK = fKi : i = 1; � � � ; qg; q = jGKj;

data points (xi; f i); i = 1; � � � ;m; with xi 2 
;
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positive weights w1; � � � ; wm:

We want to compute the spline

s(x) =

qX
i=1

ciM(xjKi)(4.1)

of degree 3 in R2 which best �ts the data (xi; f i); i = 1; � � � ;m in the least squares

sense. That is, we want to minimize the weighted residual sum of the squares of the

errors

E = E(c1; � � � ; cq) =

mX
i=1

w2
i
(f i �

qX
j=1

cjBj(x
i))2;(4.2)

where Bj(x) = M(xjKj). Thus c = (c1; � � � ; cq) must satisfy the normal equations,
@E(c)
@c

= 0 , or,

�2

mX
i=1

w2i (f
i
�

qX
j=1

cjBj(x
i))Bk(x

i) = 0; k = 1; � � � ; q:(4.3)

We rewrite the normal equations (4.3) in the form

qX
j=1

cj

mX
i=1

w2
i
Bj(x

i)Bk(x
i) =

mX
i=1

w2
i
f iBk(x

i); k = 1; � � � ; q;(4.4)

which can be written in the matrix form

Ac = b(4.5)

where A is the q � q matrix whose (j,k) element is
P

m

i=1w
2
i
Bj(x

i)Bk(xi); and c and b

are column vectors with elements cj and
P

m

i=1 w
2
i
f iBj(x

i); respectively. The matrix A

turns out to be large sparse, symmetric matrix.

5. Bases

In our B-spline approximation, we use the normalized B-spline bases

N(xjx0; � � � ; xn) =
(n� s)!s!

n!
M(xjx0; � � � ; xn):

Then the recurrence relation (2.15) takes the form

N(xjx0; � � � ; xn) =

nX
j=0

�jN(xjx0; � � � ; xj�1; xj+1; � � � ; xn);

Where �j
0s are in (2.16). Using this recurrence relation we compute N(xjx0; � � � xn)

for fourteen di�erent knot con�gurations of points in the (x; y)-plane. The resulting

discrete representations of the B-spline basis functions are then graphically displayed

in Figs. 6-8. In our polynomial approximation, we use as bases the homogeneous

monomials given in the array of Pascal triangle as in Fig. 5.
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1

x y

x2 xy y2

xn xn�1y xyn�1 yn

Figure 5

(0; 0)(1; 0)(1; 1)(0; 1)

s = 2; n = 3; degree 1, C(R2)

Figure 6

6. Numerical results

6.1. Test functions for approximating schemes.

In our numerical results, we use as test functions the functions given in (A)-(G).

(A) f(x,y)= 1
1+100(x2+y2)

(B) f(x,y)=cos(100x2y)

(C) f(x,y)=exp(5xy)

(D) f(x,y)=3jx+ yj

(E) f(x,y)=sin(16�xy)

(F) f(x,y)=cos(50x2y)

(G) f(x,y)=sin(8�xy)

We use the following schemes (I)-(V) for numerical tests. The weights wi are all set to
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(0; 0)(1; 0)(1=2; 1)(1=4; 1=4)(3=4; 1=4)(1=2; 3=4)

s = 2; n = 5; degree 3, C2(R2)

Figure 7

double point
(0; 0)(1; 0)(1; 1)(0; 1)(1=2; 1=2)(1=2; 1=2)

s = 2; n = 5; degree 3, C1(R2)

Figure 8
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x1;0 x2;0

x5;0

x4;0 x3;0

Figure 9

x1;0 x2;0x6;0

x9;0

x5;0 x7;0

x8;0x4;0 x3;0

Figure 10

unity throughout all the schemes. The only di�erence of the schemes (I) and (II) are

the knot positions. In the scheme (III), the domain is 4 times larger than in (I) or (II).

The schemes (IV) and (V) are for the polynomial approximations.

I. Polyhedral set 
1 is as in Fig. 9.

The number of basis elements is q = 40. The regular 15�15 grids of calculation

points (xi; f i) on [�:25; :24] � [�:25; :24] were chosen as data points. The knot

positions xi;j are x1;0 = (�:25;�:25); x2;0 = (:25;�:25); x3;0 = (:25; :25); x4;0 =

(�:25; :25); x5;0 = (0; 0) and xi;0 = � � � = xi;3; i = 1; � � � ; 5:

II. Polyhedral set 
2 is as in Fig. 10. The number of basis elements is q = 80. Data

points are the same as in (I). The positions of knots xi;j are as in Table 1.

III. Polyhedral set 
3 is as in Fig. 11. The number of basis elements is q = 320.

Regular 29� 29 grids of calculations (xi; f i) on [�:5; :48]� [�:5; :48] were chosen

as data points. The knot positions are
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Table 1

(i; j) 0 1 2 3

1 (-0.26,-0.26) (-0.30,-0.26) (-0.26,-0.30) (-0.26,-0.25)

2 (0.26,-0.26) (0.30,-0.27) (0.26,-0.30) (0.27,-0.25)

3 (0.26,0.26) (0.30,0.27) (0.25,0.30) (0.27,0.25)

4 (-0.26,0.26) (-0.30,0.25) (-0.26,0.30) (-0.27,0.26)

5 (-0.26,0.00) (-0.26,0.00) (-0.26,0.00) (-0.26,0.00)

6 (0.00,-0.26) (0.00,-0.26) (0.00,-0.26) (0.00,-0.26)

7 (0.26,0.00) (0.26,0.00) (0.26,0.00) (0.26,0.00)

8 (0.00,0.26) (0.00,0.26) (0.00,0.26) (0.00,0.26)

9 (0.00,0.00) (0.00,0.0.00) (0.00,0.00) (0.00,0.00)

x10;0 x20;0 x15;0 x21;0 x11;0

x19;0 x1;0 x6;0 x2;0 x22;0

x14;0 x5;0 x9;0 x7;0 x16;0

x18;0 x4;0 x8;0 x3;0 x23;0

x13;0 x25;0 x17;0 x24;0 x12;0

Figure 11

x1;0 = (�:25;�:25); x2;0 = (:25;�:25); x3;0 = (:25; :25);

x4;0 = (�:25; :25); x5;0 = (�:25; 0); x6;0 = (0;�:25);

x7;0 = (:25; 0); x8;0 = (0; :25); x9;0 = (0; 0);

x10;0 = (�:502;�:502); x11;0 = (:502;�:502); x12;0 = (:502; :502);

x13;0 = (�:502; :502); x14;0 = (�:502; 0); x15;0 = (0;�:502);

x16;0 = (:502; 0); x17;0 = (0; :502); x18;0 = (�:502; :25);

x19;0 = (�:502;�:25); x20;0 = (�:25;�:502); x21;0 = (:25;�:502);

x22;0 = (:502;�:25); x23;0 = (:502; :25); x24;0 = (:25; :502);

x25;0 = (�:25; :502)

and xi;0 = � � � = xi;3; i = 1 � � � 25:
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IV. Data points are the same as in (I). Polynomial basis of total degree 8 is used.

The number of basis elements is 36.

V. Data points are the same as in (III). Polynomial basis of total degree 8 is used.

The number of basis elements are 36.

6.2. Graphical comparisons.

We compare the original surface with the approximated �ttings. We approximate the

surfaces (A)-(G) by the approximation schemes (I)-(V). The Figs. 12-17 are graphical

comparisons.

6.3. Errors.

We compare the errors among the approximation schemes. In Tables 2-3, the average

absolute errors and the average relative errors are compared for functions (A) - (G) in

the approximation schemes (I),(II) and (IV). Tables 4-5 compare the errors in schemes

(III) and (V).

Table 2. Average absolute error

Functions Scheme(I) Scheme(II) Scheme(IV)
1

1+100(x2+y2)
1.0918e-2 4.6651e-3 2.5118e-2

cos(100x2y) 1.7329e-2 1.4776e-3 2.9632e-3

exp(5xy) 1.7657e-4 5.9417e-5 2.5023e-6

3jx+ yj 2.5717e-6 1.3480e-2 2.7416e-2

sin(16�xy) 3.7729e-2 5.1286e-3 1.6429e-2

Table 3. Average relative error

Functions Scheme(I) Scheme(II) Scheme(IV)
1

1+100(x2+y2)
4.9916e-2 1.5479e-2 1.2248e-1

cos(100x2y) 8.7580e-2 3.3665e-3 1.1063e-2

exp(5xy) 1.7188e-4 5.8826e-5 2.5014e-6

3jx+ yj 1.2185e-5 1.5664e-1 2.3931e-1

sin(16�xy) 2.3976e-1 6.7305e-2 2.1213e-1
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Table 4. Average absolute error

Functions Scheme(III) Scheme(V)
1

1+100(x2+y2)
1.0696e-3 3.4757e-2

cos(100x2y) 7.3530e-3 2.1149e-0

exp(5xy) 7.9110e-5 5.7887e-4

3jx+ yj 6.4370e-3 5.4138e-2

sin(16�xy) 3.1792e-3 1.3312e-1

Table 5. Average relative error

Functions Scheme(III) Scheme(V)
1

1+100(x2+y2)
4.1144e-3 4.6234e-1

cos(100x2y) 2.5439e-2 3.5786e-1

exp(5xy) 6.3108e-5 5.7966e-4

3jx+ yj 5.8683e-2 2.7154e-1

sin(16�xy) 4.1738e-2 4.4043e-1
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Figure 12. (1) Test function (A) f(x; y) = 1
1+100(x2+y2)

(original surface)

Figure 13. Approximated surface by scheme (III) (spline approximation)

6.4. Analysis.

The Tables 3, 5 and the corresponding graphical representations show that the B-

spline approximation is better than the polynomial approximation for the surfaces
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Figure 14. Approximated surface by scheme (V) (polynomial approximation)

Figure 15. (2) Test function (C) f(x; y) = exp(5xy) (original surface)

(A),(B),(E),(F),(G) which vary rapidly. Especially, for the surface (A) which vary very

rapidly, the spline approximation is much better than the polynomial approximation .

For the surface (C) which vary slowly, the polynomial approximation is as good as the

spline approximation as seen in Tables 3, 5 and Figs. 15-17. In the larger domains, the
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Figure 16. Approximated surface by scheme (III) (spline approximation)

Figure 17. Approximated surface by scheme (V) (polynomial approximation)

B-spline approximation is better than the polynomial approximation for all the cases

we consider. See Table 5. For the surface (D), the scheme (I) is better than (II) as seen

in Table 3. This is because we divided the region according to the wedge of the surface

(D) in the case (I).
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6.5. Conclusions.

The multivariate B-spline approximation needed more work than that of the polyno-

mial approximation. It approximated most of the surfaces we considered much better

than the polynomial approximation. Especially, for the surface which vary rapidly,

the multivariate B-spline is much better than the polynomial one. If we know some

properties of the surface, we can take those into account in taking the knot positions to

get better approximation . This is impossible in polynomial approximation. When we

want to approximate a surface globally in a larger domain, the multivariate B-spline

seems to be very good in getting an approximated surface. In order to �t a surface with

a discrete data , the multivariate B-spline would give a good approximated surface.
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