• Title/Summary/Keyword: Multistep

Search Result 140, Processing Time 0.026 seconds

NEUTRON CROSS SECTION DATA LIBRARY FOR PD-105, AG-109, XE-131 AND CS-133

  • LEE Y. D.;CHANG J. H.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.101-108
    • /
    • 2005
  • The neutron induced nuclear cross-section data for Pd-105, Ag-109, Xe-131, and Cs-133 were calculated and evaluated from an unresolved energy to 20 MeV. The energy dependent optical model potential parameters were extracted based on recent experimental data and applied up to 20 MeV. A spherical optical model and a statistical model for the equilibrium energy, and a multistep direct and a multistep compound model for the pre-equilibrium energy were used in the calculation. The direct capture model was recently introduced for fast neutron capture. The theoretically calculated cross-sections were compared with the experimental data and the evaluated files. The total and capture cross-sections calculated using the model were in good agreement with the reference experimental data. The evaluated cross-section results were compiled in ENDF-6 format and merged with the resonance component, already adopted in the ENDF/B-VI release 8. New data library files covering from thermal to 20 MeV were created. They are at the preliminary stage of an ENDF/B- VII release.

Neutron Cross Section Evaluation on Pr-141, Nd-143, Nd-145, Sm-147 and Sm-149

  • Lee, Y. D.;J. H. Chang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.370-381
    • /
    • 2002
  • The neutron induced nuclear data for Pr-141, Nd-143, Nd-145, Sm-147 and Sm-149 were calculated and evaluated from 10 keV to 20 MeV. The energy dependent optical model potential parameters were extracted based on the recent experimental data and applied up to 20 MeV. The s-wave strength function was calculated. Spherical optical model , statistical model in equilibrium energy, multistep direct and multistep compound model in pre-equilibrium energy and direct capture model were introduced in Empire calculation. The theoretically calculated cross sections were compared with the experimental data and the evaluated files. The model calculated total and capture cross sections were in good agreement with the reference experimental data. The capture cross sections in pre-equilibrium were enhanced in recent released Empire version. The evaluated cross section results were compiled to ENDF-6 format and will improve the ENDF/B-Vl.

One-pot Synthesis of Multifunctional Mn3O4/mesoporous Silica Core/shell Nanoparticles for Biomedical Applications

  • Lee, Dong Jun;Lee, Nohyun;Lee, Ji Eun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.113-118
    • /
    • 2022
  • Multifunctional nanomaterials based on mesoporous silica nanoparticles (MSN) and metal oxide nanocrystals are among the most promising materials for theragnosis because of their ease of modification and high biocompatibility. However, the preparation of multifunctional nanoparticles requires time-consuming multistep processes. Herein, we report a simple one-pot synthesis of multifunctional Mn3O4/mesoporous silica core/shell nanoparticles (Mn3O4@mSiO2) involving the temporal separation of core formation and shell growth. This simple procedure greatly reduces the time and effort required to prepare multifunctional nanoparticles. Despite the simplicity of the process, the properties of nanoparticles are not markedly different from those of core/shell nanoparticles synthesized by a previously reported multistep process. The Mn3O4@mSiO2 nanoparticles are biocompatible and have potential for use in optical imaging and magnetic resonance imaging.

A Study on the Characteristics of μc-Si:H Films Prepared by Multistep Deposition Method using SiH4/H2 Gas Mixture (SiH4/H2 혼합기체를 Multistep 방식으로 증착한 수소화된 실리콘 박막의 특성 연구)

  • Kim, Taehwan;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.250-256
    • /
    • 2014
  • In this study, we deposited and investigated ${\mu}c$-Si:H thin films prepared by Plasma Enhanced Chemical Vapor Deposition(PECVD) system. To deposition silicon thin films, we controlled $SiH_4$ gas concentration, RF input power, and heater temperature. According to the experiments, the more $SiH_4$ gas concentration increased, deposition rate also increased but crystalline property decreased at the same conditions. In the RF input power case, deposition rate and crystalline property increased together when the input power increased from 100[W] to 300[W]. If RF input power was 300[W], deposition rate has reached saturation point. In the heater temperature, deposition rate increased when heater temperature increased. Crystalline property maintained a certain level until heater temperature was $250[^{\circ}C]$. And then it was a suddenly increased. Multistep method has been proposed to improve the quality of ${\mu}c$-Si:H thin film. $SiH_4$ gas was injected with a time interval. According to the experiments, crystallite ratio improve about 20~60[%] and photo conductivity increased up to six times.

Evaluation of tunnel face stability based on upper bound theorem (상한치 이론에 근거한 터널 막장의 안정성 연구)

  • Lee, In-Mo;Lee, Jae-Sung;Nam, Seok-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.3-11
    • /
    • 2003
  • Face stability of a tunnel is a main concern during tunnel excavation. However, there has been only a few studies on this problem while a lot of researches on the support systems have been carried out. In addition, when tunneling is performed below the groundwater level, the groundwater flows into the tunnel so that the seepage forces generated on the tunnel face might give rise to a serious potential for the face instability. In this study, the face stability was evaluated by simultaneously considering two factors: one is the effective stress calculated by upper bound theorem; the other is the seepage forces acting on the tunnel face obtained by numerical analysis under the condition of steady-state groundwater flow. Tunneling in difficult geological conditions often requires auxiliary techniques to guarantee safe tunnel excavations and/or to prevent damage to structures and services around the tunnel. The steel pipe-reinforced multistep grouting has been recently applied to tunnel sites in Korea. Face stability of a tunnel with the steel pipe-reinforced multistep grouting was also analyzed in this study.

  • PDF

MICROLEAKAGE OF VARIOUS COMPOSITE RESIN SYSTEMS (다양한 복합레진 시스템의 변연 누출도)

  • Kim, In-Soo;Min, Kyung-San;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.127-133
    • /
    • 2003
  • The object of this study was to compare the microleakage between various composite resin systems of multistep, one-bottle, and self-etching systems using electrical conductivity. After making class V cavities ($4{\times}3{\times}1.5{\;}mm$ around CEJ), they were bulk filled with three kinds of resins of A3. Teeth were storaged in a saline solution for one day, after then, they were finished and polished using Sof-Lex system. Another stress of thermocycling was made for 500 times from $5^{\circ}{\;}to{\;}55^{\circ}C$ with each dwelling time of 10 seconds. Electrical conductivity (microamphere, $\mu\textrm{A}$) was checked four times: before and after cavity preparation, after filing, after thermocycling. One-way ANOVA and 95% Scheffe Post Hoc test was used for checking any statistical difference among groups. Another 95% Paired Samples T-test was also used for estimating any significant difference within group after cavity filling or thermocycling. The results were as follows: 1 Every specimen showed various range of microleakage after filing. There was, however, no difference between composite resin systems. 2. All composite resin systems showed marked increase in microleakage with a thermocycling (p<0.05), there was, however, no difference between composite resin systems. 3. Although there was no significant difference between groups (p=0.078), one-bottle and self-etching systems seemed to be unstable than multistep system. Within the limits of this study, it was concluded that much more consideration should be needed when using thermally unstable one-bottle and self-etching systems that have multi-advantages from simplified step. More studies will be needed to solve these kinds of problems.

Multistep Photo-excitation in four-level Atomic Model (네준위 원자 모델에서의 다단계 광여기 현상)

  • 임창환
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.46-49
    • /
    • 1991
  • 우라늄 원자의 선택적 광이온화 과정을 레이저 빔과 상호 작용하는 네준위 원자 모델을 통하여 분석하였다. 다준위 원자 모델이 보이는 원자 감금 현상과 여기 경로의 중첩으로 인한 간섭 현상을 이용하여 모델 내의 최상 준위의 원자 밀도를 최대화하는 조건을 착고, 그 물리적 해석을 부여하였다.

  • PDF