• Title/Summary/Keyword: Multispectral image

Search Result 227, Processing Time 0.027 seconds

Multispectral image data compression using classified vector quantization (영역분류 벡터 양자화를 이용한 다중분광 화상데이타 압축)

  • 김영춘;반성원;김중곤;서용수;이건일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.42-49
    • /
    • 1996
  • In this paper, we propose a satellite multispectral image data compression method using classified vector quantization. This method classifies each pixel vector considering band characteristics of multispectral images. For each class, we perform both intraband and interband vector quantization to romove spatial and spectral redundancy, respectively. And residual vector quantization for error images is performed to reduce error of interband vector quantization. Thus, this method improves compression efficiency because of removing both intraband(spatial) and interband (spectral) redundancy in multispectral images, effectively. Experiments on landsat TM multispectral image show that compression efficiency of proposed method is better than that of conventional method.

  • PDF

Color Correction for Uniformity Illumination using Multispectral Relighting (멀티스펙트럴 재조명을 이용한 균일 조명 색상 보정)

  • Sim, Kyudong;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.22 no.2
    • /
    • pp.207-213
    • /
    • 2017
  • In order to accurately perform multispectral imaging using a multiplexed illumination, intensity of illumination in a scene must be uniform. For image acquisition that requires accurate color information, even if not multispectral imaging, the illumination information must be accurate, and a flat light source or illumination calibration is performed for accurate illumination characteristics. In this paper, we propose a method of color correction to uniformly illuminate an image with non-uniform illumination intensity. The proposed method uses multispectral imaging instead of illumination calibration for color correction. First of all, we perform multispectral imaging with two images obtained from non-uniformity illumination to acquire spectral reflectance. The obtained reflection spectrum is relit as the illumination characteristic of the image obtained from general planar light such as fluorescent light or sunlight. By comparing the image obtained by relighting with the uniformly illuminated image, the non-uniformity of the illumination is confirmed, and the color correction is performed as the image obtained from the uniform image. It is expected that the experimental results will confirm whether the non-uniformity of the illumination is uniformly corrected and reduce the restriction of illumination in obtaining the color information of the image.

Increasing Spatial Resolution of Remotely Sensed Image using HNN Super-resolution Mapping Combined with a Forward Model

  • Minh, Nguyen Quang;Huong, Nguyen Thi Thu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.559-565
    • /
    • 2013
  • Spatial resolution of land covers from remotely sensed images can be increased using super-resolution mapping techniques for soft-classified land cover proportions. A further development of super-resolution mapping technique is downscaling the original remotely sensed image using super-resolution mapping techniques with a forward model. In this paper, the model for increasing spatial resolution of remote sensing multispectral image is tested with real SPOT 5 imagery at 10m spatial resolution for an area in Bac Giang Province, Vietnam in order to evaluate the feasibility of application of this model to the real imagery. The soft-classified land cover proportions obtained using a fuzzy c-means classification are then used as input data for a Hopfield neural network (HNN) to predict the multispectral images at sub-pixel spatial resolution. The 10m SPOT multispectral image was improved to 5m, 3,3m and 2.5m and compared with SPOT Panchromatic image at 2.5m resolution for assessment.Visually, the resulted image is compared with a SPOT 5 panchromatic image acquired at the same time with the multispectral data. The predicted image is apparently sharper than the original coarse spatial resolution image.

Color Image Acquired by the Multispectral Near-IR LED Lights (다중 파장 근적외선 LED조명에 의한 컬러영상 획득)

  • Kim, Ari;Kim, Hong-Suk;Park, Youngsik;Park, Seung-Ok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • A system which provides multispectral near-IR and visible gray images of objects is constructed and an algorithm is derived to acquire a natural color image of objects from the gray images. A color image of 24 color patches is obtained by recovering their CIE (International Commission on Illumination) LAB color coordinates $L^*$, $a^*$, $b^*$ from their gray images using the algorithm based on polynomial regression. The system is composed of a custom-designed LED illuminator emitting multispectral near-IR illuminations, fluorescent lamps and a monochrome digital camera. Color reproducibility of the algorithm is estimated in CIELAB color difference ${\Delta}E^*_{ab}$. And as a result, if yellow and magenta color patches with around 10 ${\Delta}E^*_{ab}$ are disregarded, the average ${\Delta}E^*_{ab}$ is 2.9, and this value is within the acceptability tolerance for quality evaluation for digital color complex image.

Unsupervised Multispectral Image Segmentation Based on 1D Combined Neighborhood Differences (1D 통합된 근접차이에 기반한 자율적인 다중분광 영상 분할)

  • Saipullah, Khairul Muzzammil;Yun, Byung-Choon;Kim, Deok-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.625-628
    • /
    • 2010
  • This paper proposes a novel feature extraction method for unsupervised multispectral image segmentation based in one dimensional combined neighborhood differences (1D CND). In contrast with the original CND, which is applied with traditional image, 1D CND is computed on a single pixel with various bands. The proposed algorithm utilizes the sign of differences between bands of the pixel. The difference values are thresholded to form a binary codeword. A binomial factor is assigned to these codeword to form another unique value. These values are then grouped to construct the 1D CND feature image where is used in the unsupervised image segmentation. Various experiments using two LANDSAT multispectral images have been performed to evaluate the segmentation and classification accuracy of the proposed method. The result shows that 1D CND feature outperforms the spectral feature, with average classification accuracy of 87.55% whereas that of spectral feature is 55.81%.

A Study on Classifications of Remote Sensed Multispectral Image Data using Soft Computing Technique - Stressed on Rough Sets - (소프트 컴퓨팅기술을 이용한 원격탐사 다중 분광 이미지 데이터의 분류에 관한 연구 -Rough 집합을 중심으로-)

  • Won Sung-Hyun
    • Management & Information Systems Review
    • /
    • v.3
    • /
    • pp.15-45
    • /
    • 1999
  • Processing techniques of remote sensed image data using computer have been recognized very necessary techniques to all social fields, such as, environmental observation, land cultivation, resource investigation, military trend grasp and agricultural product estimation, etc. Especially, accurate classification and analysis to remote sensed image da are important elements that can determine reliability of remote sensed image data processing systems, and many researches have been processed to improve these accuracy of classification and analysis. Traditionally, remote sensed image data processing systems have been processed 2 or 3 selected bands in multiple bands, in this time, their selection criterions are statistical separability or wavelength properties. But, it have be bring up the necessity of bands selection method by data distribution characteristics than traditional bands selection by wavelength properties or statistical separability. Because data sensing environments change from multispectral environments to hyperspectral environments. In this paper for efficient data classification in multispectral bands environment, a band feature extraction method using the Rough sets theory is proposed. First, we make a look up table from training data, and analyze the properties of experimental multispectral image data, then select the efficient band using indiscernibility relation of Rough set theory from analysis results. Proposed method is applied to LANDSAT TM data on 2 June 1992. From this, we show clustering trends that similar to traditional band selection results by wavelength properties, from this, we verify that can use the proposed method that centered on data properties to select the efficient bands, though data sensing environment change to hyperspectral band environments.

  • PDF

Implementation of Multispectral Imaging System (멀티스펙트럼 영상 획득 시스템 구현)

  • Jin, Yoon-Jong;Lee, Moon-Hyun;Noh, Sung-Kyu;Park, Jong-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.717-721
    • /
    • 2008
  • This paper proposes an image system that can efficiently measure the spectral reflectance of a scene using RGB cameras and LED light sources. Multispectral imaging system is composed of LED controllers, LED clusters and RGB cameras. It captures full-spectral images at real-time. The system adopts a simple, empirical linear model to estimate the full spectral reflectance at each pixel. Since the model is linear, the reconstruction is efficient and stable. We estimated the spectral reflectance of various scenes using the system and showed the effectiveness of the proposed system.

  • PDF

Image Restoration and Segmentation for PAN-sharpened High Multispectral Imagery (PAN-SHARPENED 고해상도 다중 분광 자료의 영상 복원과 분할)

  • Lee, Sanghoon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.1003-1017
    • /
    • 2017
  • Multispectral image data of high spatial resolution is required to obtain correct information on the ground surface. The multispectral image data has lower resolution compared to panchromatic data. PAN-sharpening fusion technique produces the multispectral data with higher resolution of panchromatic image. Recently the object-based approach is more applied to the high spatial resolution data than the conventional pixel-based one. For the object-based image analysis, it is necessary to perform image segmentation that produces the objects of pixel group. Image segmentation can be effectively achieved by the process merging step-by-step two neighboring regions in RAG (Regional Adjacency Graph). In the satellite remote sensing, the operational environment of the satellite sensor causes image degradation during the image acquisition. This degradation increases variation of pixel values in same area, and results in deteriorating the accuracy of image segmentation. An iterative approach that reduces the difference of pixel values in two neighboring pixels of same area is employed to alleviate variation of pixel values in same area. The size of segmented regions is associated with the quality of image segmentation and is decided by a stopping rue in the merging process. In this study, the image restoration and segmentation was quantitatively evaluated using simulation data and was also applied to the three PAN-sharpened multispectral images of high resolution: Dubaisat-2 data of 1m panchromatic resolution from LA, USA and KOMPSAT3 data of 0.7m panchromatic resolution from Daejeon and Chungcheongnam-do in the Korean peninsula. The experimental results imply that the proposed method can improve analytical accuracy in the application of remote sensing high resolution PAN-sharpened multispectral imagery.

Detection Algorithm for Cracks on the Surface of Tomatoes using Multispectral Vis/NIR Reflectance Imagery

  • Jeong, Danhee;Kim, Moon S.;Lee, Hoonsoo;Lee, Hoyoung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.199-207
    • /
    • 2013
  • Purpose: Tomatoes, an important agricultural product in fresh-cut markets, are sometimes a source of foodborne illness, mainly Salmonella spp. Growth cracks on tomatoes can be a pathway for bacteria, so its detection prior to consumption is important for public health. In this study, multispectral Visible/Near-Infrared (NIR) reflectance imaging techniques were used to determine optimal wavebands for the classification of defect tomatoes. Methods: Hyperspectral reflectance images were collected from samples of naturally cracked tomatoes. To classify the resulting images, the selected wavelength bands were subjected to two-band permutations, and a supervised classification method was used. Results: The results showed that two optimal wavelengths, 713.8 nm and 718.6 nm, could be used to identify cracked spots on tomato surfaces with a correct classification rate of 91.1%. The result indicates that multispectral reflectance imaging with optimized wavebands from hyperspectral images is an effective technique for the classification of defective tomatoes. Conclusions: Although it can be susceptible to specular interference, the multispectral reflectance imaging is an appropriate method for commercial applications because it is faster and much less expensive than Near-Infrared or fluorescence imaging techniques.

The Hyperspectral Image Classification with the Unsupervised SAM (무감독 SAM 기법을 이용한 하이퍼스펙트럴 영상 분류)

  • 김대성;김진곤;변영기;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.159-164
    • /
    • 2004
  • SAM(Spectral Angle Mapper) is the method using the similarly of the angle between pairs of signatures instead of the spectral distance(MDC, MLC etc.) for classification or clustering. In this paper, we applied unsupervised techniques(Unsupervised SAM and ISODATA) to the Hyperspectral Image(Hyperion) which has innumerable, narrow and contiguous spectral bands and Multispectral Image(ETM$\^$+/) for the clustering of signatures. The overall measured accuracies of the USAM and ISODATA of multispectral image were 76.52%, 53.91% and the USAM and ISODATA of hyperspectral image were 63.04%, 53.91%. From the results of our test, we report that the Unsupervised SAM is better classfication technique than ISODATA. Also we believe that the "Spectral Angle" can potentially be one of the most accurate classifier not only multispectral images but hyperspectral images.

  • PDF