• Title/Summary/Keyword: Multispectral Sensor

Search Result 69, Processing Time 0.025 seconds

Detection and Classification of Major Aerosol Type Using the Himawari-8/AHI Observation Data (Himawari-8/AHI 관측자료를 이용한 주요 대기 에어로솔 탐지 및 분류 방법)

  • Lee, Kwon-Ho;Lee, Kyu-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.493-507
    • /
    • 2018
  • Due to high spatio-temporal variability of amount and optical/microphysical properties of atmospheric aerosols, satellite-based observations have been demanded for spatiotemporal monitoring the major aerosols. Observations of the heavy aerosol episodes and determination on the dominant aerosol types from a geostationary satellite can provide a chance to prepare in advance for harmful aerosol episodes as it can repeatedly monitor the temporal evolution. A new geostationary observation sensor, namely the Advanced Himawari Imager (AHI), onboard the Himawari-8 platform, has been observing high spatial and temporal images at sixteen wavelengths from 2016. Using observed spectral visible reflectance and infrared brightness temperature (BT), the algorithm to find major aerosol type such as volcanic ash (VA), desert dust (DD), polluted aerosol (PA), and clean aerosol (CA), was developed. RGB color composite image shows dusty, hazy, and cloudy area then it can be applied for comparing aerosol detection product (ADP). The CALIPSO level 2 vertical feature mask (VFM) data and MODIS level 2 aerosol product are used to be compared with the Himawari-8/AHI ADP. The VFM products can deliver nearly coincident dataset, but not many match-ups can be returned due to presence of clouds and very narrow swath. From the case study, the percent correct (PC) values acquired from this comparisons are 0.76 for DD, 0.99 for PA, 0.87 for CA, respectively. The MODIS L2 Aerosol products can deliver nearly coincident dataset with many collocated locations over ocean and land. Increased accuracy values were acquired in Asian region as POD=0.96 over land and 0.69 over ocean, which were comparable to full disc region as POD=0.93 over land and 0.48 over ocean. The Himawari-8/AHI ADP algorithm is going to be improved continuously as well as the validation efforts will be processed by comparing the larger number of collocation data with another satellite or ground based observation data.

Multi-spectral Imaging-based Color Image Reconstruction Using the Conventional Bayer CFA (베이어 CFA 카메라를 사용한 다중 스펙트럼 기반 컬러영상 생성 기술)

  • Shin, Jeong-Ho
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.561-565
    • /
    • 2011
  • This paper presents an imaging system for reconstruction of enhanced color images using the conventional Bayer CFA. By extracting various colors such as RGBCY from two sequential images which consist of a image by broadband G channel lens filter and the other image captured without one, the proposed color image reconstruction system can reduce the computational complexity for demosaicking and make high resolution color information without aliasing artifacts. Because the proposed system uses the common Bayer CFA image sensor, fabricating a new type of CFA is not necessary for obtaining a multi-spectral image, which can be easily extensible for applications of multi-spectral imaging. Finally, in order to verify the performance of the proposed system, experimental results are performed. By comparing with the existing demosaicking methods, the proposed camera system showed the significant improvements in the sense of color resolution.

Simulated Radiances of the OSMI over the Oceans

  • Lim, Hyo-Suk;Kim, Yong-Seung;Lee, Dong-Han
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.43-48
    • /
    • 1998
  • Prior to launch, simulated radiances of the Ocean Scanning Multispectral Imager (OSMI) will be very useful to guess the real imagery of OSMI and to check the data processing system for OSMI. The data processing system for OSMI which is one sensor of Korea Mult i - Purpose Satellite (KOMPSAT) scheduled for launch in 1999 is being developed based on the SeaWiFS Data Analysis System (SeaDAS). Such a simulation should include the spectral bands, orbital and scanning characteristics of the OSMI and KOMPSAT spacecraft. The simulation is also very helpful for finding and preparing for problem areas before launch. This paper describes a method to create simulated radiances of the OSMI over the oceans. Our method for constructing a simulated OSMI imagery is to propagate a KOMPSAT orbit over a field of Coastal Zone Color Scanner (CZCS) pigment values and to use the values and atmospheric components to calculate total radiances. A modified Brouwer - Lyddane model with drag was used for the realistic orbit prediction, the CZCS pigment data were used to compute water - leaving radiances, and a variety of radiative transfer models were used to calculate atmospheric contributions to total radiances detected by OSMI. Imagery of the simulated OSMI total radiances for 6 nominal bands was obtained. As expected, water - leaving radiances were only a small fraction of total radiances and sun glint contaminations were observed near the solar declination. Therefore, atmospheric correction is very important in the calculation of pigment concentration from total radiances. Because the imagery near the sun's glitter pattern is virtually useless and must be discarded, more advanced mission planning will be required.

  • PDF

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

Applicability of unmanned aerial vehicle for chlorophyll-a map in river (하천녹조지도 작성을 위한 무인항공기 활용 가능성에 관한 연구)

  • Kim, Eunju;Nam, Sookhyun;Koo, Jae-Wuk;Lee, Saromi;Ahn, Changhyuk;Park, Jerhoh;Park, Jungil;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.3
    • /
    • pp.197-204
    • /
    • 2017
  • This study was carried out to apply the UAV(Unmanned Aerial Vehicle) coupled with Multispectral sensor for the algae bloom monitoring in river. The study acquired remote sensing data using UAV on the midstream area of Gum River, one of four major rivers in South Korea. Normalized difference vegetation index (NDVI) is used for monitoring algae change. This study conducted water sampling and analysis in the field for correlating with NDVI values. Among the samples analyzed, the chlorophyll concentration exhibited strong and significant linear relationships with NDVI, and thus NDVI was chosen for algae bloom index to identify emergence aspect of phytoplankton in river. Aerial remote sensing technology can provide more accurate, flexible, cheaper, and faster monitoring methods of detecting and predicting eutrophication and therefore cyanobacteria bloom in water reservoirs compared to currently used technology. As a result, there was high level of correlation in chlorophyll-a and NDVI. It is expected that when this remote water quality and pollution monitoring technology is applied in the field, it would be able to improve capabilities to deal with the river water quality and pollution at the early stage.

Derivation of Surface Temperature from KOMPSAT-3A Mid-wave Infrared Data Using a Radiative Transfer Model

  • Kim, Yongseung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.343-353
    • /
    • 2022
  • An attempt to derive the surface temperature from the Korea Multi-purpose Satellite (KOMPSAT)-3A mid-wave infrared (MWIR) data acquired over the southern California on Nov. 14, 2015 has been made using the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model. Since after the successful launch on March 25, 2015, the KOMPSAT-3A spacecraft and its two payload instruments - the high-resolution multispectral optical sensor and the scanner infrared imaging system (SIIS) - continue to operate properly. SIIS uses the MWIR spectral band of 3.3-5.2 ㎛ for data acquisition. As input data for the realistic simulation of the KOMPSAT-3A SIIS imaging conditions in the MODTRAN model, we used the National Centers for Environmental Prediction (NCEP) atmospheric profiles, the KOMPSAT-3Asensor response function, the solar and line-of-sight geometry, and the University of Wisconsin emissivity database. The land cover type of the study area includes water,sand, and agricultural (vegetated) land located in the southern California. Results of surface temperature showed the reasonable geographical pattern over water, sand, and agricultural land. It is however worthwhile to note that the surface temperature pattern does not resemble the top-of-atmosphere (TOA) radiance counterpart. This is because MWIR TOA radiances consist of both shortwave (0.2-5 ㎛) and longwave (5-50 ㎛) components and the surface temperature depends solely upon the surface emitted radiance of longwave components. We found in our case that the shortwave surface reflection primarily causes the difference of geographical pattern between surface temperature and TOA radiance. Validation of the surface temperature for this study is practically difficult to perform due to the lack of ground truth data. We therefore made simple comparisons with two datasets over Salton Sea: National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) field data and Salton Sea data. The current estimate differs with these datasets by 2.2 K and 1.4 K, respectively, though it seems not possible to quantify factors causing such differences.

Study on the Method of Diagnosing the Individuals Crop Growth Using by Multi-Spectral Images

  • Dongwon Kwon;Jaekyeong Baek;Wangyu Sang;Sungyul Chang;Jung-Il Cho;Ho-young Ban;HyeokJin Bak
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.108-108
    • /
    • 2022
  • In this study, multispectral images of wheat according to soil water state were collected, compared, and analyzed to measure the physiological response of crops to environmental stress at the individual level. CMS-V multi-spectral camera(Silios Technologies) was used for image acquisition. The camera lens consists of eight spectral bands between 550nm and 830nm. Light Reflective information collected in each band sensor and stored in digital values, and it is converted into a reflectance for calculating the vegetation index and used. According to the camera manual, the NDVI(Normalized Difference vegetation index) value was calculated using 628 nm and 752 nm bands. Image measurement was conducted under natural light conditions, and reflectance standards(Labsphere) were captured with plants for reflectance calculation. The wheat variety used Gosomil, and the wheat grown in the field was transplanted into a pot after heading date and measured. Three treatments were performed so that the soil volumetric water content of the pot was 13~17%, 20~23%, and 25%, and the growth response of wheat according to each treatment was compared using the NDVI value. In the first measurement after port transplantation, the difference in NDVI value according to treatment was not significant, but in the subsequent measurement, the NDVI value of the treatment with a water content of 13 to 17% was lowest and was the highest at 20 to 23%. The NDVI values decreased compared to the first measurement in all treatment, and the decrease was the largest at 13-17% water content and the smallest at 20-23%. Although the difference in NDVI values could be confirmed, it would be difficult to directly relate it to the water stress of plants, and further research on the response of crops to environmental stress and the analysis of multi-spectral image will be needed.

  • PDF

Application of Hyperspectral Imagery to Decision Tree Classifier for Assessment of Spring Potato (Solanum tuberosum) Damage by Salinity and Drought (초분광 영상을 이용한 의사결정 트리 기반 봄감자(Solanum tuberosum)의 염해 판별)

  • Kang, Kyeong-Suk;Ryu, Chan-Seok;Jang, Si-Hyeong;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Lee, Su Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.317-326
    • /
    • 2019
  • Salinity which is often detected on reclaimed land is a major detrimental factor to crop growth. It would be advantageous to develop an approach for assessment of salinity and drought damages using a non-destructive method in a large landfills area. The objective of this study was to examine applicability of the decision tree classifier using imagery for classifying for spring potatoes (Solanum tuberosum) damaged by salinity or drought at vegetation growth stages. We focused on comparing the accuracies of OA (Overall accuracy) and KC (Kappa coefficient) between the simple reflectance and the band ratios minimizing the effect on the light unevenness. Spectral merging based on the commercial band width with full width at half maximum (FWHM) such as 10 nm, 25 nm, and 50 nm was also considered to invent the multispectral image sensor. In the case of the classification based on original simple reflectance with 5 nm of FWHM, the selected bands ranged from 3-13 bands with the accuracy of less than 66.7% of OA and 40.8% of KC in all FWHMs. The maximum values of OA and KC values were 78.7% and 57.7%, respectively, with 10 nm of FWHM to classify salinity and drought damages of spring potato. When the classifier was built based on the band ratios, the accuracy was more than 95% of OA and KC regardless of growth stages and FWHMs. If the multispectral image sensor is made with the six bands (the ratios of three bands) with 10 nm of FWHM, it is possible to classify the damaged spring potato by salinity or drought using the reflectance of images with 91.3% of OA and 85.0% of KC.

Radiometric Cross Validation of KOMPSAT-3 AEISS (다목적실용위성 3호 AEISS센서의 방사 특성 교차 검증)

  • Shin, Dong-yoon;Choi, Chul-uong;Lee, Sun-gu;Ahn, Ho-yong
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.529-538
    • /
    • 2016
  • This study, multispectral and hyperspectral sensors were utilized to use radiometric cross validation for the purpose of radiometric quality evaluation of a 'KOMPSAT-3'. Images of EO-1 Hyperion and Landsat-8 OLI sensors taken in PICS site were used. 2 sections that have 2 different types of ground coverage respectively were selected as the site of cross validation based on aerial hyperspectral sensor and TOA Reflectance. As a result of comparison between the TOA reflectance figures of KOMPSAT-3, EO-1 Hyperion and CASI-1500, the difference was roughly 4%. It is considered that it satisfies the radiological quality standard when the difference of figure of reflectance in a comparison to the other satellites is found within 5%. The difference in Blue, Green, Red band was approximately 3% as a comparison result of TOA reflectance. However the figure was relatively low in NIR band in a comparison to Landsat-8. It is thought that the relatively low reflectance is because there is a difference of band passes in NIR band of 2 sensors and in a case of KOMPSAT-3 sensor, a section of 940nm, which shows the strong absorption through water vapor, is included in band pass resulting in comparatively low reflectance. To overcome these conditions, more detailed analysis with the application of rescale method as Spectral Bandwidth Adjustment Factor (SBAF) is required.

Estimation of Fresh Weight, Dry Weight, and Leaf Area Index of Soybean Plant using Multispectral Camera Mounted on Rotor-wing UAV (회전익 무인기에 탑재된 다중분광 센서를 이용한 콩의 생체중, 건물중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Kang, Kyeong-Suk;Kang, Dong-Woo;Zou, Kunyan;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.327-336
    • /
    • 2019
  • Soybean is one of the most important crops of which the grains contain high protein content and has been consumed in various forms of food. Soybean plants are generally cultivated on the field and their yield and quality are strongly affected by climate change. Recently, the abnormal climate conditions, including heat wave and heavy rainfall, frequently occurs which would increase the risk of the farm management. The real-time assessment techniques for quality and growth of soybean would reduce the losses of the crop in terms of quantity and quality. The objective of this work was to develop a simple model to estimate the growth of soybean plant using a multispectral sensor mounted on a rotor-wing unmanned aerial vehicle(UAV). The soybean growth model was developed by using simple linear regression analysis with three phenotypic data (fresh weight, dry weight, leaf area index) and two types of vegetation indices (VIs). It was found that the accuracy and precision of LAI model using GNDVI (R2= 0.789, RMSE=0.73 ㎡/㎡, RE=34.91%) was greater than those of the model using NDVI (R2= 0.587, RMSE=1.01 ㎡/㎡, RE=48.98%). The accuracy and precision based on the simple ratio indices were better than those based on the normalized vegetation indices, such as RRVI (R2= 0.760, RMSE=0.78 ㎡/㎡, RE=37.26%) and GRVI (R2= 0.828, RMSE=0.66 ㎡/㎡, RE=31.59%). The outcome of this study could aid the production of soybeans with high and uniform quality when a variable rate fertilization system is introduced to cope with the adverse climate conditions.