• 제목/요약/키워드: Multispecies

검색결과 30건 처리시간 0.023초

A periodontitis-associated multispecies model of an oral biofilm

  • Park, Jong Hwa;Lee, Jae-Kwan;Um, Heung-Sik;Chang, Beom-Seok;Lee, Si-Young
    • Journal of Periodontal and Implant Science
    • /
    • 제44권2호
    • /
    • pp.79-84
    • /
    • 2014
  • Purpose: While single-species biofilms have been studied extensively, we know notably little regarding multispecies biofilms and their interactions. The purpose of this study was to develop and evaluate an in vitro multispecies dental biofilm model that aimed to mimic the environment of chronic periodontitis. Methods: Streptococcus gordonii KN1, Fusobacterium nucleatum ATCC23726, Aggregatibacter actinomycetemcomitans ATCC33384, and Porphyromonas gingivalis ATCC33277 were used for this experiment. The biofilms were grown on 12-well plates with a round glass slip (12 mm in diameter) with a supply of fresh medium. Four different single-species biofilms and multispecies biofilms with the four bacterial strains listed above were prepared. The biofilms were examined with a confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM). The minimum inhibitory concentrations (MIC) for four different planktonic single-species and multispecies bacteria were determined. The MICs of doxycycline and chlorhexidine for four different single-species biofilms and a multispecies biofilm were also determined. Results: The CLSM and SEM examination revealed that the growth pattern of the multispecies biofilm was similar to those of single-species biofilms. However, the multispecies biofilm became thicker than the single-species biofilms, and networks between bacteria were formed. The MICs of doxycycline and chlorhexidine were higher in the biofilm state than in the planktonic bacteria. The MIC of doxycycline for the multispecies biofilm was higher than were those for the single-species biofilms of P. gingivalis, F. nucleatum, or A. actinomycetemcomitans. The MIC of chlorhexidine for the multispecies biofilm was higher than were those for the single-species biofilms of P. gingivalis or F. nucleatum. Conclusions: To mimic the natural dental biofilm, a multispecies biofilm composed of four bacterial species was grown. The 24-hour multispecies biofilm may be useful as a laboratory dental biofilm model system.

Multispecies Interactions in Biofilms and Implications to Safety of Drinking Water Distribution System

  • Reuben, Rine Christopher;Roy, Pravas Chandra;Sarkar, Shovon Lal;Ha, Sang-Do;Jahid, Iqbal Kabir
    • 한국미생물·생명공학회지
    • /
    • 제47권4호
    • /
    • pp.473-486
    • /
    • 2019
  • In the aquatic environment, microorganisms are predominantly organized as biofilms. Biofilms are formed by the aggregation of microbial cells and are surrounded by a matrix of extracellular polymeric substances (EPS) secreted by the microbial cells. Biofilms are attached to various surfaces, such as the living tissues, indwelling medical devices, and piping of the industrial potable water system. Biofilms formed from a single species has been extensively studied. However, there is an increased research focus on multispecies biofilms in recent years. It is important to assess the microbial mechanisms underlying the regulation of multispecies biofilm formation to determine the drinking water microbial composition. These mechanisms contribute to the predominance of the best-adapted species in an aquatic environment. This review focuses on the interactions in the multispecies biofilms, such as coaggregation, co-metabolism, cross-species protection, jamming of quorum sensing, lateral gene transfer, synergism, and antagonism. Further, this review explores the dynamics and the factors favoring biofilm formation and pathogen transmission within the drinking water distribution systems. The understanding of the physiology and biodiversity of microbial species in the biofilm may aid in the development of novel biofilm control and drinking water disinfection processes.

Epifluorescence Microscopy with Image Analysis as a Promising Method for Multispecies Biofilm Quantification

  • Ji Won Lee;So-Yeon Jeong;Tae Gwan Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권3호
    • /
    • pp.348-355
    • /
    • 2023
  • Epifluorescence microscopy with image analysis was evaluated as a biofilm quantification method (i.e., quantification of surface area colonized by biofilms), in comparison with crystal violet (CV) staining. We performed different experiments to generate multispecies biofilms with natural and artificial bacterial assemblages. First, four species were inoculated daily in 16 different sequences to form biofilms (surface colonization, 0.1%-56.6%). Second, a 9-species assemblage was allowed to form biofilms under 10 acylase treatment episodes (33.8%-55.6%). The two methods comparably measured the quantitative variation in biofilms, exhibiting a strong positive relationship (R2 ≥ 0.7). Moreover, the two methods exhibited similar levels of variation coefficients. Finally, six synthetic and two natural consortia were allowed to form biofilms for 14 days, and their temporal dynamics were monitored. The two methods were comparable in quantifying four biofilms colonizing ≥18.7% (R2 ≥ 0.64), but not for the other biofilms colonizing ≤ 3.7% (R2 ≤ 0.25). In addition, the two methods exhibited comparable coefficients of variation in the four biofilms. Microscopy and CV staining comparably measured the quantitative variation of biofilms, exhibiting a strongly positive relationship, although microscopy cannot appropriately quantify the biofilms below the threshold colonization. Microscopy with image analysis is a promising approach for easily and rapidly estimating absolute quantity of multispecies biofilms.

포트폴리오 기법을 이용한 복수어종의 최적 생산관리 전략 (A Strategy for Optimal Production Management of Multi-Species Fisheries using a Portfolio Approach)

  • 김도훈
    • 수산경영론집
    • /
    • 제45권1호
    • /
    • pp.109-119
    • /
    • 2014
  • This study aimed to examine the applicability of a portfolio approach to the ecosystem-based fisheries management targeting the large purse seine fishery. Most fisheries are targeting multispecies and species are biologically and technically interacted each other. It enables a portfolio approach to be applied to find optimal production of each species through expected returns and risk analyses. Under specific assumptions on the harvest quota by species, efficient risk-return frontiers were generated and they showed a combination of optimal production level. Comparisons between portfolio and actual production provided a useful information for targeting strategy and management. Results also showed the possibility of effective multispecies fisheries management by imposing constraints on each species such as total allowable catch quotas.

Spatial moment analysis of multispecies contaminant transport in porous media

  • Natarajan, N.;Kumar, G. Suresh
    • Environmental Engineering Research
    • /
    • 제23권1호
    • /
    • pp.76-83
    • /
    • 2018
  • Spatial moment analysis has been performed on the concentration of the first species in a multispecies solute transport in porous media. Finite difference numerical technique was used in obtaining the solute concentration. A constant continuous source of contaminant was injected at the inlet of the domain. Results suggest that the decaying of solute mass increases as the magnitude of mean fluid velocity increases. The dispersion coefficient is highly time dependent under decaying of solutes with a complex behavior of mixing of solutes. The solute mobility and mixing varies non-linearly with time during its initial period, while the same ceases with higher decay rates of the first species much faster.

Indocyanine Green을 이용한 광열 치료의 다종 우식원성 바이오필름에 대한 효과 (Effect of Photothermal Therapy with Indocyanine Green in Multispecies Biofilm)

  • 김명환;박호원;이주현;서현우;이시영
    • 대한소아치과학회지
    • /
    • 제48권1호
    • /
    • pp.21-30
    • /
    • 2021
  • 이 연구의 목적은 indocyanine green (ICG)과 근적외선 diode 레이저의 사용이 다종 우식원성 바이오필름에 미치는 항균 효과를 조사하는 것이다. Streptococcus mutans, Lactobacillus casei, Candida albicans를 포함하는 다종 바이오필름이 ICG와 808 nm 근적외선 diode 레이저를 사용하여 서로 다른 조사 시간에 따라 처리되었다. Colony-forming unit (CFU)을 측정하였고, 바이오필름의 정성적 평가를 위해 공초점 레이저 주사 현미경(Confocal laser scanning microscopy, CLSM) 관찰을 시행하였다. 또한 광열 치료의 효과를 평가하기 위해 온도 측정이 시행되었다. ICG와 근적외선 diode 레이저를 사용한 군에서 CFU의 감소량이 통계적으로 유의하였으나, L. casei와 C. albicans에서는 시간에 따른 항균 효과의 유의한 차이는 관찰되지 않았다. CLSM 관찰에서도 유사한 세균 감소를 확인할 수 있었다. ICG와 근적외선 diode 레이저를 사용한 군은 ICG 없이 광조사를 시행한 군보다 더 높은 온도 상승을 보였으며, 측정된 온도는 열 치료의 온도 범위와 유사하였다. 결론적으로, ICG와 근적외선 diode 레이저는 다종 우식원성 바이오필름에 항균 효과를 보였다. 우식 예방을 위한 보조 수단으로 사용될 가능성을 가지나, 임상적인 적용을 위해서는 적용 프로토콜에 관한 연구가 필요하다.

Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness

  • Lee, Keehoon;Yoon, Sang Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1053-1064
    • /
    • 2017
  • A biofilm is a community of microbes that typically inhabit on surfaces and are encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environment and influence our lives tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients, including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicate the eradication of the biofilm infection, leading to the development of chronic infections. In this review, we discuss the history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms on their own or in association with other bacterial species (i.e., multispecies biofilms) are discussed in detail.

토양의 다중이온체계내에서의 황산이온의 이동을 고려한 흡착기작 (Mechanisms of Adsorption with Respect to Sulfate Mobility in Multispecies Systems of Soils)

  • 정덕영
    • 농업과학연구
    • /
    • 제27권2호
    • /
    • pp.135-140
    • /
    • 2000
  • 토양내에서 황산이온의 이동성은 산화환원전위, 토양광물 특성, pH, 그리고 환산이온과 토양입자 표면에 흡착에 관여하는 타 음이온들에 의해 영향을 받는다고 알려져 있 다. 제시된 황산이온의 흡착 기작은 토양입자 표면과 수용성상태의 음이온간의 상관 관계를 나타낸 것이다. 그러므로 흡 탈착연구로 부터 얻어진 적정한 계수를 적용함으로서 다중 이온이 존재하는 토양내에서의 일반적 등온흡착 곡선을 적용할 수 있는 이 동모형은 실험적 접근 방법을 수용하게 된다.

  • PDF

Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota

  • Oh, Ju Kyoung;Vasquez, Robie;Kim, Sang Hoon;Hwang, In-Chan;Song, Ji Hoon;Park, Jae Hong;Kim, In Ho;Kang, Dae-Kyung
    • Journal of Animal Science and Technology
    • /
    • 제63권5호
    • /
    • pp.1142-1158
    • /
    • 2021
  • Short-chain fatty acids (SCFAs) are metabolic products produced during the microbial fermentation of non-digestible fibers and play an important role in metabolic homeostasis and overall gut health. In this study, we investigated the effects of supplementation with multispecies probiotics (MSPs) containing Bacillus amyloliquefaciens, Limosilactobacillus reuteri, and Levilactobacillus brevis on the gut microbiota, and fecal SCFAs and lactate levels of weaned pigs. A total of 38 pigs weaned at 4 weeks of age were fed either a basal diet or a diet supplemented with MSPs for 6 weeks. MSP administration significantly increased the fecal concentrations of lactate (2.3-fold; p < 0.01), acetate (1.8-fold; p < 0.05), and formate (1.4-fold; p < 0.05). Moreover, MSP supplementation altered the gut microbiota of the pigs by significantly increasing the population of potentially beneficial bacteria such as Olsenella, Catonella, Catenibacterium, Acidaminococcus, and Ruminococcaceae. MSP supplementation also decreased the abundance of pathogenic bacteria such as Escherichia and Chlamydia. The modulation of the gut microbiota was observed to be strongly correlated with the changes in fecal SCFAs and lactate levels. Furthermore, we found changes in the functional pathways present within the gut, which supports our findings that MSP modulates the gut microbiota and SCFAs levels in pigs. The results support the potential use of MSPs to improve the gut health of animals by modulating SCFAs production.

Adhesion of biofilm, surface characteristics, and mechanical properties of antimicrobial denture base resin

  • Ana Beatriz Vilela Teixeira;Mariana Lima da Costa Valente;Joao Pedro Nunes Sessa;Bruna Gubitoso;Marco Antonio Schiavon;Andrea Candido dos Reis
    • The Journal of Advanced Prosthodontics
    • /
    • 제15권2호
    • /
    • pp.80-92
    • /
    • 2023
  • PURPOSE. This study incorporated the nanomaterial, nanostructured silver vanadate decorated with silver nanoparticles (AgVO3), into heat-cured resin (HT) at concentrations of 2.5%, 5%, and 10% and compared the adhesion of multispecies biofilms, surface characteristics, and mechanical properties with conventional heat-cured (HT 0%) and printed resins. MATERIALS AND METHODS. AgVO3 was incorporated in mass into HT powder. A denture base resin was used to obtain printed samples. Adhesion of a multispecies biofilm of Candida albicans, Candida glabrata, and Streptococcus mutans was evaluated by colony-forming units per milliliter (CFU/mL) and metabolic activity. Wettability, roughness, and scanning electron microscopy (SEM) were used to assess the physical characteristics of the surface. The mechanical properties of flexural strength and elastic modulus were tested. RESULTS. HT 10%-AgVO3 showed efficacy against S. mutans; however, it favored C. albicans CFU/mL (P < .05). The printed resin showed a higher metabolically active biofilm than HT 0% (P < .05). There was no difference in wettability or roughness between groups (P > .05). Irregularities on the printed resin surface and pores in HT 5%-AgVO3 were observed by SEM. HT 0% showed the highest flexural strength, and the resins incorporated with AgVO3 had the highest elastic modulus (P < .05). CONCLUSION. The incorporation of 10% AgVO3 into heat-cured resin provided antimicrobial activity against S. mutans in a multispecies biofilm did not affect the roughness or wettability but reduced flexural strength and increased elastic modulus. Printed resin showed higher irregularity, an active biofilm, and lower flexural strength and elastic modulus than heat-cured resin.