• Title/Summary/Keyword: Multiplex-polymerase chain reaction

Search Result 215, Processing Time 0.03 seconds

Detection of viral pathogens and isolation of porcine circovirus 2 from postweaning multisystemic wasting syndrome-affected piglets (이유자돈 전신소모성증후군 이환 자돈에서의 바이러스성 원인체 검색 및 porcine circovirus 2 분리동정)

  • Park, Choi-Kyu;Kim, Hyun-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.4
    • /
    • pp.561-569
    • /
    • 2004
  • To detect viral agents and isolate porcine circovirus 2 (PCV2), 60 samples of lung and lymph node were collected from 5 to 12 week-old pigs that had showed clinical signs of postweaning multisystemic wasting syndrome (PMWS). Polymerase chain reactions (PCRs) were conducted to identify the viral pathogens including PCV1, PCV2, porcine parvovirus (PPV) and porcine reproductive and respiratory syndrome virus (PRRSV) that have been considered to be the causal agents of PMWS. Among 60 samples, PCV 2 was detected from 57 samples but no PCV 1 was detected. PRRSV and/or PPV were also detected from 27 (47.4%) samples and 1 (1.8%) sample of these 57 PCV 2-positive samples, respectively. Tissue homogenates were inoculated onto PCV-free PK-15 cell monolayers. Seven isolates were confirmed as PCV 2 by multiplex PCR, indirect immunofluorescence assay, and transmissible electron microscopy. These date suggest that PRRSV is a major cofactors causing PMWS in pigs that were infected with PCV2 in Korea.

Comparison of Molecular Assays for the Rapid Detection and Simultaneous Subtype Differentiation of the Pandemic Influenza A (H1N1) 2009 Virus

  • Lee, Mi Kyung;Kim, Hye Ryoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1165-1169
    • /
    • 2012
  • In April 2009, the H1N1 pandemic influenza virus emerged as a novel influenza virus. The aim of this study was to compare the performances of several molecular assays, including conventional reverse transcription polymerase chain reaction (RT-PCR), two real-time reverse transcription (rRT)-PCRs, and two multiplex RTPCRs. A total of 381 clinical specimens were collected from patients (223 men and 158 women), and both the Seeplex RV7 assay and rRT-PCR were ordered on different specimens within one week after collection. The concordance rate for the two methods was 87% (332/381), and the discrepancy rate was 13% (49/381). The positive rates for the molecular assays studied included 93.1% for the multiplex Seeplex RV7 assay, 93.1% for conventional reverse transcription (cRT)-PCR, 89.7% for the multiplex Seeplex Flu ACE Subtyping assay, 82.8% for protocol B rRT-PCR, and 58.6% for protocol A rRT-PCR. Our results showed that the multiplex Seeplex assays and the cRT-PCR yielded higher detection rates than rRT-PCRs for detecting the influenza A (H1N1) virus. Although the multiplex Seeplex assays had the advantage of simultaneous detection of several viruses, they were time-consuming and troublesome. Our results show that, although rRT-PCR had the advantage, the detection rates of the molecular assays varied depending upon the source of the influenza A (H1N1)v virus. Our findings also suggest that rRT-PCR sometimes detected virus in extremely low abundance and thus required validation of analytical performance and clinical correlation.

Development of a Multiplex PCR for Simultaneous Detection of Blueberry Red Ringspot Virus and Blueberry Scorch Virus Including an Internal Control

  • Hae Min Lee;Eun Gyeong Song;Ki Hyun Ryu
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.94-99
    • /
    • 2023
  • Blueberry red ringspot virus (BRRSV) and blueberry scorch virus (BlScV) are included in the quarantine virus list managed by the Korean Animal and Plant Quarantine Agency. A multiplex polymerase chain reaction (PCR) assay with an internal control was developed for the simultaneous detection of both viruses. The specific primers used here were designed based on the highly conserved regions of the genomic sequences of each virus, obtained from the National Center for Biotechnology Information nucleotide databases. The primers were designed to amplify a partial sequence within coat protein (CP) for detecting BRRSV and a partial sequence within the CP-16 kDa for detecting BlScV. 18S ribosomal RNA (rRNA) was used as internal control, and the primer set used in a previous study was modified in this study for detecting 18S rRNA. Each conventional PCR using the BRRSV, BlScV, and 18S rRNA primers exhibited a sensitivity of approximately 1 fg plasmid DNA. The multiplex PCR assay using the BRRSV, BlScV, and 18S rRNA primers was effective in simultaneously detecting the two viruses and 18S rRNA with a sensitivity of 1 fg plasmid DNA, similar to that of conventional PCR assays. The multiplex PCR assay developed in this study was performed using 14 blueberry cultivars grown in South Korea. BRRSV and BlScV were not detected, but 18S rRNA was all detected in all the plants tested. Therefore, our optimized multiplex PCR assay could simultaneously detect the two viruses and 18S rRNA in field samples collected from South Korea in a time-efficient manner. This approach could be valuable in crop protection and plant quarantine management.

Preliminary study on the diversity and quantity analysis of oral bacteria according to the sampling methods (구강 세균 채취법에 따른 세균의 다양성과 양 분석을 위한 예비 연구)

  • Seon-Ju Sim;Ji-Hye Kim;Hye-Sun Shin
    • Journal of Korean society of Dental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.131-139
    • /
    • 2024
  • Objectives: Oral bacterial samples included subgingival, supragingival, and saliva plaques. As the diversity and number of microorganisms deffer depending on the area of the oral cavity and the method used, an appropriate and reliable collection method is important. The present study investigated oral bacterial sampling methods. Methods: Supragingival dental plaque was collected from the buccal and lingual tooth surfaces of study participants using sterilized cotton swabs. Plaques were collected from the subgingival area using a sterilized curette. Bacterial genomic DNA was extracted using MagNA Pure 96 DNA and Viral NA low-volume kits. Real-time polymerase chain reaction (PCR) was performed using the PowerCheckTM Periodontitis Pathogens Multiplex Real-time PCR kit. Results: Aggregatibacter actinomycetemcomitans, Prevotella intermedia, and Fusobacterium nucleatum of the orange complex were not observed in the subgingival biofilms of all study participants. For Porphyromonas. gingivalis, a significant correlation was observed between supragingival, subgingival, and total tooth surface biofilms. Compared to the supragingival and subgingival biofilmss, total tooth surface biofilm exhibited the highest bacterial count when the inswabbing method was used. Conclusions: Based on these findings, the supragingival swab method is recommended for oral bacterial research.

Detection of Enterohemorrhagic Escherichia coli O157:H7 Strains Using Multiplex Polymerase Chain Reaction (Multiplex PCR을 이용한 장출혈성 대장균 O157:H7의 검출)

  • 엄용빈;김종배
    • Biomedical Science Letters
    • /
    • v.4 no.1
    • /
    • pp.43-56
    • /
    • 1998
  • A multiplex PCR method was designed by employing primers specific for the eaeA gene, conserved sequences of Shiga-like toxins (SLT-I.II), and the 60-MDa plasmid of enterohemorrhagic E. coli (EHEC) O157:H7 strain. A set of six synthetic oligonucleotide primers derived from sequences of the SLT-I.II, eaeA, and 60-MDa plasmid genes of E. coli O157:H7 were used in a multiplex PCR amplification procedure to detect these genes in the same enteric pathogens. In two enterohemorrhagic E. coli O157:H7 (ATCC 35150, ATCC 43894) reference strains, PCR products of 317bps (eaeA), 228bps (SLT-I.II), and 167bps (60-MDa plasmid) were successfully amplified simultaneously in a single reaction. However, the specific PCR products were not amplified in control strains of other enteric bacteria. The sensitivity of the multiplex PCR assay for detection of the SLT-I.II, eaeA, and 60-MDa plasmid genes of E. coli O157:H7 was found to be 2.5$\times$10$^{6}$ of bacteria in diarrheal stool to amplify all three bands. The multiplex PCR technology will allow large-scale screening of many clinical specimens or contaminated foods, and will be a very useful method for the detection of a wide range of microorganisms present in the environment, including EHEC O157:H7 in various types of specimens. The multiplex PCR assay has the potential to be used as a specific and rapid method for clinical diagnosis of disease caused by EHEC O157:H7.

  • PDF

Development of Multiplex RT-PCR for Simultaneous Detection of Garlic Viruses and the Incidence of Garlic Viral Disease in Garlic Genetic Resources

  • Nam, Moon;Lee, Yeong-Hoon;Park, Chung Youl;Lee, Min-A;Bae, Yang-Soo;Lim, Seungmo;Lee, Joong Hwan;Moon, Jae Sun;Lee, Su-Heon
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.90-96
    • /
    • 2015
  • Garlic generally becomes coinfected with several types of viruses belonging to the Potyvirus, Carlavirus, and Allexivirus genera. These viruses produce characteristically similar symptoms, they cannot be easily identified by electron microscopy (EM) or immunological detection methods, and they are currently widespread around the world, thereby affecting crop yields and crop quality adversely. For the early and reliable detection of garlic viruses, virus-specific sets of primers, including species-specific and genus-specific primers were designed. To effectively detect the twelve different types of garlic viruses, primer mixtures were tested and divided into two independent sets for multiplex polymerase chain reaction (PCR). The multiplex PCR assays were able to detect specific targets up to the similar dilution series with monoplex reverse transcription (RT)-PCR. Seventy-two field samples collected by the Gyeongbuk Agricultural Technology Administration were analyzed by multiplex RT-PCR. All seventy two samples were infected with at least one virus, and the coinfection rate was 78%. We conclude that the simultaneous detection system developed in this study can effectively detect and differentiate mixed viral infections in garlic.

Multiplex PCR Detection of the GT73, MS8xRF3, and T45 Varieties of GM Canola

  • Kim, Jae-Hwan;Kim, Tae-Woon;Lee, Woo-Young;Park, Sun-Hee;Kim, Hae-Yeong
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.104-109
    • /
    • 2007
  • A multiplex polymerase chain reaction (PCR) method was developed to simultaneously detect three varieties of genetically modified (GM) canola. The construct-specific primers were used to distinguish the following three varieties of GM canola; GT73, MS8xRF3, and T45, using multiplex PCR. The FatA (fatty acyl-ACP thioesterase) gene was used as an endogenous canola reference gene in the PCR detection. The primer pair Canendo-FIR containing a 105 bp amplicon was used to amplify the FatA gene and no amplified product was observed in any of the 15 different plants used as templates. The GT73-KHUF1/R1 primer recognized the 3'-flanking region of GT73, resulting in an amplicon of 125 bp. The Barstar-F1/MS8xRF3-R primer recognized the junction region of bars tar and the NOS terminator introduced into MS8xRF3, resulting in a 162 bp amplicon, and the T45-F2/R2 primer recognized the junction region of PAT and the 35S terminator introduced into T45, resulting in an amplicon of 186 bp. This multiplex PCR allowed for the detection of construct-specific targets in a genomic DNA mixture of up to 1% GM canola containing GT73, MS8xRF3, and T45.

Characteristics and Outcomes of Patients with Pulmonary Acute Respiratory Distress Syndrome Infected with Influenza versus Other Respiratory Viruses

  • Yoo, Jung-Wan;Ju, Sunmi;Lee, Seung Jun;Cho, Min-Chul;Cho, Yu Ji;Jeong, Yi Yeong;Lee, Jong Deog;Kim, Ho Choel
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.4
    • /
    • pp.328-334
    • /
    • 2019
  • Background: Although the frequency of respiratory viral infection in patients with pulmonary acute respiratory distress syndrome (ARDS) is not uncommon, clinical significance of the condition remains to be further elucidated. The purpose of this study was to compare characteristics and outcomes of patients with pulmonary ARDS infected with influenza and other respiratory viruses. Methods: Clinical data of patients with pulmonary ARDS infected with respiratory viruses January 2014-June 2018 were reviewed. Respiratory viral infection was identified by multiplex reverse transcription-polymerase chain reaction (RT-PCR). Results: Among 126 patients who underwent multiplex RT-PCR, respiratory viral infection was identified in 46% (58/126): 28 patients with influenza and 30 patients with other respiratory viruses. There was no significant difference in baseline and clinical characteristics between patients with influenza and those with other respiratory viruses. The use of extracorporeal membrane oxygenation (ECMO) was more frequent in patients with influenza than in those with other respiratory viruses (32.1% vs 3.3%, p=0.006). Co-bacterial pathogens were more frequently isolated from respiratory samples of patients with pulmonary ARDS infected with influenza virus than those with other respiratory viruses. (53.6% vs 26.7%, p=0.036). There were no significant differences regarding clinical outcomes. In multivariate analysis, acute physiology and chronic health evaluation II was associated with 30-mortality (odds ratio, 1.158; 95% confidence interval, 1.022-1.312; p=0.022). Conclusion: Respiratory viral infection was not uncommon in patients with pulmonary ARDS. Influenza virus was most commonly identified and was associated with more co-bacterial infection and ECMO therapy.

Development of a multiplex qRT-PCR assay for detection of African swine fever virus, classical swine fever virus and porcine reproductive and respiratory syndrome virus

  • Chen, Yating;Shi, Kaichuang;Liu, Huixin;Yin, Yanwen;Zhao, Jing;Long, Feng;Lu, Wenjun;Si, Hongbin
    • Journal of Veterinary Science
    • /
    • v.22 no.6
    • /
    • pp.87.1-87.12
    • /
    • 2021
  • Background: African swine fever virus (ASFV), classical swine fever virus (CSFV), and porcine reproductive and respiratory syndrome virus (PRRSV) are still prevalent in many regions of China. Co-infections make it difficult to distinguish their clinical symptoms and pathological changes. Therefore, a rapid and specific method is needed for the differential detection of these pathogens. Objectives: The aim of this study was to develop a multiplex real-time quantitative reverse transcription polymerase chain reaction (multiplex qRT-PCR) for the simultaneous differential detection of ASFV, CSFV, and PRRSV. Methods: Three pairs of primers and TaqMan probes targeting the ASFV p72 gene, CSFV 5' untranslated region, and PRRSV ORF7 gene were designed. After optimizing the reaction conditions, including the annealing temperature, primer concentration, and probe concentration, multiplex qRT-PCR for simultaneous and differential detection of ASFV, CSFV, and PRRSV was developed. Subsequently, 1,143 clinical samples were detected to verify the practicality of the assay. Results: The multiplex qRT-PCR assay could specifically and simultaneously detect the ASFV, CSFV, and PRRSV with a detection limit of 1.78 × 100 copies for the ASFV, CSFV, and PRRSV, but could not amplify the other major porcine viruses, such as pseudorabies virus, porcine circovirus type 1 (PCV1), PCV2, PCV3, foot-and-mouth disease virus, porcine parvovirus, atypical porcine pestivirus, and Senecavirus A. The assay had good repeatability with coefficients of variation of intra- and inter-assay of less than 1.2%. Finally, the assay was used to detect 1,143 clinical samples to evaluate its practicality in the field. The positive rates of ASFV, CSFV, and PRRSV were 25.63%, 9.36%, and 17.50%, respectively. The co-infection rates of ASFV+CSFV, ASFV+PRRSV, CSFV+PRRSV, and ASFV+CSFV+PRRSV were 2.45%, 2.36%, 1.57%, and 0.17%, respectively. Conclusions: The multiplex qRT-PCR developed in this study could provide a rapid, sensitive, specific diagnostic tool for the simultaneous and differential detection of ASFV, CSFV, and PRRSV.

Molecular Identification of Korean Mountain Ginseng Using an Amplification Refractory Mutation System (ARMS)

  • In, Jun-Gyo;Kim, Min-Kyeoung;Lee, Ok-Ran;Kim, Yu-Jin;Lee, Beom-Soo;Kim, Se-Young;Kwon, Woo-Seang;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • Expensive herbs such as ginseng are always a possible target for fraudulent labeling. New mountain ginseng strains have occasionally been found deep within mountain areas and commercially traded at exorbitant prices. However, until now, no scientific basis has existed to distinguish such ginseng from commonly cultivated ginseng species other than by virtue of being found within deep mountain areas. Polymerase chain reaction (PCR) analysis of the internal transcribed spacer has been shown to be an appropriate method for the identification of the most popular species (Panax ginseng) in the Panax ginseng genus. A single nucleotide polymorphism (SNP) has been identified between three newly found mountain ginseng (KGD4, KGD5, and KW1) and already established Panax species. Specific PCR primers were designed from this SNP site within the sequence data and used to detect the mountain ginseng strains via multiplex PCR. The established multiplex-PCR method for the simultaneous detection of newly found mountain ginseng strains, Korean ginseng, and foreign ginseng in a single reaction was determined to be effective. This study is the first report of scientific discrimination of "mountain ginsengs" and describes an effective method of identification for fraud prevention and for uncovering the possible presence of other, cheaper ginseng species on the market.