• Title/Summary/Keyword: Multiplex PCR assay

Search Result 125, Processing Time 0.025 seconds

Detection of Pathogenic Yersinia enterocolitica Strains by a Rapid and Specific Multiplex PCR Assay

  • Kim Young-Sam;Kim Jong-Bae;Eom Yong-Bin
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.333-339
    • /
    • 2004
  • A multiplex PCR assay targeting the yst and 16S rRNA genes of Yersinia enterocolitica was developed to specifically identify pathogenic Y. enterocolitica from pure culture. Simultaneous amplification of 145 and 416 bp fragments of the yst and 16S rRNA genes of Y. enterocolitica was obtained using the primer pairs in a single reaction. Validation of the assay was performed with the reference Yersinia strains and other members of the family Enterobacteriaceae. The defined primer pairs amplified the targeted sequence from only pathogenic Y. enterocolitica strains, whereas none of the other bacterial species yielded any amplified fragments. Within an assay time of 4 h, this assay offers a very specific, reliable, and inexpensive alternative to the conventional phenotypic assays used in clinical laboratories to identify pathogenic Y. enterocolitica.

  • PDF

Multiplex TaqMan qPCR Assay for Detection, Identification, and Quantification of Three Sclerotinia Species

  • Dong Jae Lee;Jin A Lee;Dae-Han Chae;Hwi-Seo Jang;Young-Joon Choi;Dalsoo Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.382-388
    • /
    • 2022
  • White mold (or Sclerotinia stem rot), caused by Sclerotinia species, is a major air, soil, or seed-transmitted disease affecting numerous crops and wild plants. Microscopic or culture-based methods currently available for their detection and identification are time-consuming, laborious, and often erroneous. Therefore, we developed a multiplex quantitative PCR (qPCR) assay for the discrimination, detection, and quantification of DNA collected from each of the three economically relevant Sclerotinia species, namely, S. sclerotiorum, S. minor, and S. nivalis. TaqMan primer/probe combinations specific for each Sclerotinia species were designed based on the gene sequences encoding aspartyl protease. High specificity and sensitivity of each probe were confirmed for sclerotium and soil samples, as well as pure cultures, using simplex and multiplex qPCRs. This multiplex assay could be helpful in detecting and quantifying specific species of Sclerotinia, and therefore, may be valuable for disease diagnosis, forecasting, and management.

Determination of Sperm Sex Ratio in Bovine Semen Using Multiplex Real-time Polymerase Chain Reaction

  • Khamlor, Trisadee;Pongpiachan, Petai;Sangsritavong, Siwat;Chokesajjawatee, Nipa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1411-1416
    • /
    • 2014
  • Gender selection is important in livestock industries; for example, female calves are required in the dairy industry. Sex-sorted semen is commonly used for the production of calves of the desired gender. However, assessment of the sex ratio of the sorted semen is tedious and expensive. In this study, a rapid, cost effective and reliable method for determining the sex ratio was developed using a multiplex real-time polymerase chain reaction (PCR) assay. In this assay, the X and Y chromosome-specific markers, i.e., bovine proteolipid protein (PLP) gene and sex-determining region Y (SRY) were simultaneously quantified in a single tube. The multiplex real-time PCR assay was shown to have high amplification efficiencies (97% to 99%) comparable to the separated-tube simplex real-time PCR assay. The results obtained from both assays were not significantly different (p>0.05). The multiplex assay was validated using reference DNA of known X ratio (10%, 50%, and 90%) as templates. The measured %X in semen samples were the same within 95% confidence intervals as the expected values, i.e., >90% in X-sorted semen, <10% in Y-sorted semen and close to 50% in the unsorted semen. The multiplex real-time PCR assay as shown in this study can thus be used to assess purity of sex-sorted semen.

Development of a multiplex qRT-PCR assay for detection of African swine fever virus, classical swine fever virus and porcine reproductive and respiratory syndrome virus

  • Chen, Yating;Shi, Kaichuang;Liu, Huixin;Yin, Yanwen;Zhao, Jing;Long, Feng;Lu, Wenjun;Si, Hongbin
    • Journal of Veterinary Science
    • /
    • v.22 no.6
    • /
    • pp.87.1-87.12
    • /
    • 2021
  • Background: African swine fever virus (ASFV), classical swine fever virus (CSFV), and porcine reproductive and respiratory syndrome virus (PRRSV) are still prevalent in many regions of China. Co-infections make it difficult to distinguish their clinical symptoms and pathological changes. Therefore, a rapid and specific method is needed for the differential detection of these pathogens. Objectives: The aim of this study was to develop a multiplex real-time quantitative reverse transcription polymerase chain reaction (multiplex qRT-PCR) for the simultaneous differential detection of ASFV, CSFV, and PRRSV. Methods: Three pairs of primers and TaqMan probes targeting the ASFV p72 gene, CSFV 5' untranslated region, and PRRSV ORF7 gene were designed. After optimizing the reaction conditions, including the annealing temperature, primer concentration, and probe concentration, multiplex qRT-PCR for simultaneous and differential detection of ASFV, CSFV, and PRRSV was developed. Subsequently, 1,143 clinical samples were detected to verify the practicality of the assay. Results: The multiplex qRT-PCR assay could specifically and simultaneously detect the ASFV, CSFV, and PRRSV with a detection limit of 1.78 × 100 copies for the ASFV, CSFV, and PRRSV, but could not amplify the other major porcine viruses, such as pseudorabies virus, porcine circovirus type 1 (PCV1), PCV2, PCV3, foot-and-mouth disease virus, porcine parvovirus, atypical porcine pestivirus, and Senecavirus A. The assay had good repeatability with coefficients of variation of intra- and inter-assay of less than 1.2%. Finally, the assay was used to detect 1,143 clinical samples to evaluate its practicality in the field. The positive rates of ASFV, CSFV, and PRRSV were 25.63%, 9.36%, and 17.50%, respectively. The co-infection rates of ASFV+CSFV, ASFV+PRRSV, CSFV+PRRSV, and ASFV+CSFV+PRRSV were 2.45%, 2.36%, 1.57%, and 0.17%, respectively. Conclusions: The multiplex qRT-PCR developed in this study could provide a rapid, sensitive, specific diagnostic tool for the simultaneous and differential detection of ASFV, CSFV, and PRRSV.

A Multiplex PCR Assay for the Detection and Differentiation of Enterotoxin-producing and Emetic Toxin-producing Bacillus cereus Strains

  • Lee, Dae-Sung;Kim, Keun-Sung;Kwon, Ki-Sung;Hong, Kwang-Won
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.761-765
    • /
    • 2008
  • Bacillus cereus causes two different types of food poisoning syndromes: diarrhea and emesis. The diarrheal syndrome is attributed to various enterotoxins, including nonhemolytic enterotoxin, hemolytic enterotoxin, and enterotoxin-T, whereas the emetic syndrome is caused by the dodecadepsipeptide toxin cereulide. A multiplex polymerase chain reaction (PCR) assay was developed to rapidly detect and identify B. cereus strains. Three primer pairs specific to regions within genes encoding nonhemolytic enterotoxin (nheA), molecular chaperonin (groEL), and cereulide synthetase (ces) were used to identify and differentiate between the enterotoxin-producing and emetic toxin-producing B. cereus strains. The cereulide-producing emetic B. cereus showed 3 PCR products of 325, 405, and 685 bp for the groEL, ces, and nheA genes, respectively, whereas the enterotoxin-producing B. cereus showed 2 PCR products without a ces gene specific DNA fragment. Specific amplifications and differentiations by multiplex PCR assay were obtained using 62 B. cereus strains and 13 strains' of other bacterial species. The detection limit of this assay for enterotoxin-producing strain and emetic toxin-producing strain from pure cultures were $2.4{\times}10^1$ and $6.0{\times}10^2\;CFU/tube$, respectively. These results suggest that our multiplex PCR method may be useful for the rapid detection and differentiation of B. cereus strains in foods.

Rapid Detection of Vancomycin Resistant Enterococci Using Multiplex Polymerase Chain Reactions (다중 중합효소 연쇄반응을 이용한 반코마이신 내성 장구균의 신속 검출)

  • 김종배;김근희;송혜원;박성언;엄용빈;박상욱;김양수;박수진
    • Biomedical Science Letters
    • /
    • v.5 no.1
    • /
    • pp.95-100
    • /
    • 1999
  • It is generally difficult, time-consuming, and expensive for the clinical laboratory to detect vancomycin resistant enterococci (VRE). The aim of this study was to develop and evaluate the multiplex polymerase chain reaction (PCR) assay system as a diagnostic tool for the rapid detection of VRE from clinical samples and/or for the identification of VRE from the bacterial strains isolated from clinical specimens. Specific primers, designed from the nucleotide sequences respectively encoding the vanA, vanB, vanC-1, vanC-2/3 genes in enterococci, were coupled in a multiplex PCR assay system. With this multiplex PCR assay system, we investigated the incidence rates and types of VRE isolated from clinical samples. A total of 75 strains of enterococci were isolated in 3 general hospitals in Korea. Of these isolates, 36 strains showed a pattern of high-level vancomycin resistance which associated with vanA gene, whereas 18 strains showed low-level vancomycin resistance associated with vanC-1 or vanC-2/3 gene. Thus, multiplex PCR assay method established in this study could be applied for the rapid detection of VRE.

  • PDF

Development of Multiplex PCR for Simultaneous Detection of Citrus Viruses and the Incidence of Citrus Viral Diseases in Late-Maturity Citrus Trees in Jeju Island

  • Hyun, Jae Wook;Hwang, Rok Yeon;Jung, Kyung Eun
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.307-317
    • /
    • 2017
  • Satsuma dwarf virus (SDV) or Citrus mosaic sadwavirus (CiMV) were not consistently detected in RTPCR assay with the primer sets based on gene of Japan isolates. SDV and CiMV isolates were distinctively divided into two groups based on phylogenetic analysis of PP2 gene cloned from 22 Korean isolates, and the Korean CiMV and SDV isolates shared 95.5-96.2% and 97.1-97.7% sequence identity with Japanese isolate, respectively. We developed PP2-1 primer set based on the PP2 gene sequence of Korean isolates to simultaneously and effectively detect SDV and CiMV. And CTLV-2013 and CTV-po primer sets were newly designed for detection of Citrus tatter leaf virus (CTLV) and Citrus tristeza virus (CTV), respectively. Using these primer sets, a new multiplex PCR assay was developed as a means to simultaneously detect 4 citrus viruses, CTV, CTLV, SDV, and CiMV. The degree of detection by the multiplex PCR were consistent with those of uniplex RT-PCR for detection of each of the viruses. Therefore, the new multiplex PCR provides an efficient method for detecting 4 citrus viruses, which will help diagnose many citrus plants at the same time. We verified that 35.2% and 72.1% of 775 trees in 155 orchards were infected with SDV or CiMV (SDV/CiMV) and CTV by the multiplex-PCR assay, respectively, and CTLV was not detected in any of the trees tested.

Simultaneous Detection and Identification of Bacillus cereus Group Bacteria Using Multiplex PCR

  • Park, Si-Hong;Kim, Hyun-Joong;Kim, Jae-Hwan;Kim, Tae-Woon;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1177-1182
    • /
    • 2007
  • Bacillus cereus group bacteria share a significant degree of genetic similarity. Thus, to differentiate and identify the Bacillus cereus group efficiently, a multiplex PCR method using the gyrB and groEL genes as diagnostic markers is suggested for simultaneous detection. The assay yielded a 400 bp amplicon for the groEL gene from all the B. cereus group bacteria, and a 253 bp amplicon from B. anthracis, 475 bp amplicon from B. cereus, 299 bp amplicon from B. thuringiensis, and 604 bp amplicon from B. mycoides for the gyrB gene. No nonspecific amplicons were observed with the DNA from 29 other pathogenic bacteria. The specificity and sensitivity of the B. cereus group identification using this multiplex PCR assay were evaluated with different kinds of food samples. In conclusion, the proposed multiplex PCR is a reliable, simple, rapid, and efficient method for the simultaneous identification of B. cereus group bacteria from food samples in a single tube.

Rapid One Step Detection of Pathogenic Bacteria in Urine with Sexually Transmitted Disease (STD) and Prostatitis Patient by Multiplex PCR Assay (mPCR)

  • Lee, Sang-Rok;Chung, Ji-Min;Kim, Young-Gon
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.453-459
    • /
    • 2007
  • We developed a multiplex PCR (mPCR) assay to simultaneously detect Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Ureaplasma urealyticum, Corynebacterium spp. and seudomona aeruginosa. This method employs a single tube and multiple specific primers which yield 200, 281, 346, 423, 542, and 1,427 bp PCR products, respectively. All the PCR products were easily detected by agarose gel electrophoresis and were sequenced to confirm the specificity of the reactions. To test this method, DNA extracted from urine samples was collected from 96 sexually transmitted disease or prostatitis patients at a local hospital clinical center, and were subjected to the mPCR assay. The resulting amplicons were cloned and sequenced to exactly match the sequences of known pathogenic isolates. N. gonorrhoeae and Corynebacterium spp. were the most frequently observed pathogens found in the STDs and prostatitis patients, respectively. Unexpectedly, P. aeruginosa was also detected in some of the STD and prostatitis samples. More than one pathogen species was found in 10% and 80.7% of STD and prostatitis samples, respectively, indicating that STD and prostatitis patients may have other undiagnosed and associates. The sensitivity of the assay was determined by sing purified DNA from six pathogenic laboratory strains and revealed that this technique could detect pathogenic DNA at concentrations ranging from 0.018 to $1.899\;pg/{\mu}l$. Moreover, the specificities of this assay were found to be highly efficient. Thus, this mPCR assay may be useful for the rapid diagnosis of causative infectious STDs and prostatitis. useful for the infectious STDs and prostatitis.

Development of a Multiplex RT-PCR for the Simultaneous Detection of Three Viruses in Cherry Plants

  • Park, Chung Youl;Park, Jeongran;Lee, Geunsik;Yi, Seung-In;Kim, Byeong Hoon;Eom, Jung Sik;Lee, Som Gyeol;Kim, Hongsup
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.233-236
    • /
    • 2018
  • A multiplex RT-PCR (mRT-PCR) assay was developed for the detection of the recently reported viruses, Cherry virus A (CVA), Little cherry virus 1 (LChV-1), and Little cherry virus 2 (LChV-2), in cherry plants in Korea. Eight sets of primers were designed for each virus and their specificity was tested by using various combinations of mixed primer sets. From the designed primer sets, one combination was selected and further evaluated to estimate the optimum temperature and detection limits of the mRT-PCR. A newly developed mRT-PCR assay was also tested using 20 cherry samples collected in the field. This mRT-PCR assay may be a useful tool for field surveys of diseases and the rapid detection of these three viruses in cherry plants.