• Title/Summary/Keyword: Multiple-object tracking

Search Result 205, Processing Time 0.024 seconds

Deep Learning-Based Roundabout Traffic Analysis System Using Unmanned Aerial Vehicle Videos (드론 영상을 이용한 딥러닝 기반 회전 교차로 교통 분석 시스템)

  • Janghoon Lee;Yoonho Hwang;Heejeong Kwon;Ji-Won Choi;Jong Taek Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2023
  • Roundabouts have strengths in traffic flow and safety but can present difficulties for inexperienced drivers. Demand to acquire and analyze drone images has increased to enhance a traffic environment allowing drivers to deal with roundabouts easily. In this paper, we propose a roundabout traffic analysis system that detects, tracks, and analyzes vehicles using a deep learning-based object detection model (YOLOv7) in drone images. About 3600 images for object detection model learning and testing were extracted and labeled from 1 hour of drone video. Through training diverse conditions and evaluating the performance of object detection models, we achieved an average precision (AP) of up to 97.2%. In addition, we utilized SORT (Simple Online and Realtime Tracking) and OC-SORT (Observation-Centric SORT), a real-time object tracking algorithm, which resulted in an average MOTA (Multiple Object Tracking Accuracy) of up to 89.2%. By implementing a method for measuring roundabout entry speed, we achieved an accuracy of 94.5%.

Real-time Water Quality Monitoring System Using Vision Camera and Multiple Objects Tracking Method (비젼 카메라와 다중 객체 추적 방법을 이용한 실시간 수질 감시 시스템)

  • Yang, Won-Keun;Lee, Jung-Ho;Cho, Ik-Hwan;Jin, Ju-Kyong;Jeong, Dong-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.401-410
    • /
    • 2007
  • In this paper, we propose water quality monitoring system using vision camera and multiple objects tracking method. The proposed system analyzes object individually using vision camera unlike monitoring system using sensor method. The system using vision camera consists of individual object segmentation part and objects tracking part based on interrelation between successive frames. For real-time processing, we make background image using non-parametric estimation and extract objects using background image. If we use non-parametric estimation, objects extraction method can reduce large amount of computation complexity, as well as extract objects more effectively. Multiple objects tracking method predicts next motion using moving direction, velocity and acceleration of individual object then carries out tracking based on the predicted motion. And we apply exception handling algorithms to improve tracking performance. From experiment results under various conditions, it shows that the proposed system can be available for real-time water quality monitoring system since it has very short processing time and correct multiple objects tracking.

Robust Multi-person Tracking for Real-Time Intelligent Video Surveillance

  • Choi, Jin-Woo;Moon, Daesung;Yoo, Jang-Hee
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.551-561
    • /
    • 2015
  • We propose a novel multiple-object tracking algorithm for real-time intelligent video surveillance. We adopt particle filtering as our tracking framework. Background modeling and subtraction are used to generate a region of interest. A two-step pedestrian detection is employed to reduce the computation time of the algorithm, and an iterative particle repropagation method is proposed to enhance its tracking accuracy. A matching score for greedy data association is proposed to assign the detection results of the two-step pedestrian detector to trackers. Various experimental results demonstrate that the proposed algorithm tracks multiple objects accurately and precisely in real time.

Object Detection Using Predefined Gesture and Tracking (약속된 제스처를 이용한 객체 인식 및 추적)

  • Bae, Dae-Hee;Yi, Joon-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.43-53
    • /
    • 2012
  • In the this paper, a gesture-based user interface based on object detection using predefined gesture and the tracking of the detected object is proposed. For object detection, moving objects in a frame are computed by comparing multiple previous frames and predefined gesture is used to detect the target object among those moving objects. Any object with the predefined gesture can be used to control. We also propose an object tracking algorithm, namely density based meanshift algorithm, that uses color distribution of the target objects. The proposed object tracking algorithm tracks a target object crossing the background with a similar color more accurately than existing techniques. Experimental results show that the proposed object detection and tracking algorithms achieve higher detection capability with less computational complexity.

Viewpoint Invariant Person Re-Identification for Global Multi-Object Tracking with Non-Overlapping Cameras

  • Gwak, Jeonghwan;Park, Geunpyo;Jeon, Moongu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2075-2092
    • /
    • 2017
  • Person re-identification is to match pedestrians observed from non-overlapping camera views. It has important applications in video surveillance such as person retrieval, person tracking, and activity analysis. However, it is a very challenging problem due to illumination, pose and viewpoint variations between non-overlapping camera views. In this work, we propose a viewpoint invariant method for matching pedestrian images using orientation of pedestrian. First, the proposed method divides a pedestrian image into patches and assigns angle to a patch using the orientation of the pedestrian under the assumption that a person body has the cylindrical shape. The difference between angles are then used to compute the similarity between patches. We applied the proposed method to real-time global multi-object tracking across multiple disjoint cameras with non-overlapping field of views. Re-identification algorithm makes global trajectories by connecting local trajectories obtained by different local trackers. The effectiveness of the viewpoint invariant method for person re-identification was validated on the VIPeR dataset. In addition, we demonstrated the effectiveness of the proposed approach for the inter-camera multiple object tracking on the MCT dataset with ground truth data for local tracking.

Object Tracking Framework of Video Surveillance System based on Non-overlapping Multi-camera (비겹침 다중 IP 카메라 기반 영상감시시스템의 객체추적 프레임워크)

  • Han, Min-Ho;Park, Su-Wan;Han, Jong-Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.141-152
    • /
    • 2011
  • Growing efforts and interests of security techniques in a diverse surveillance environment, the intelligent surveillance system, which is capable of automatically detecting and tracking target objects in multi-cameras environment, is actively developing in a security community. In this paper, we propose an effective visual surveillance system that is avaliable to track objects continuously in multiple non-overlapped cameras. The proposed object tracking scheme consists of object tracking module and tracking management module, which are based on hand-off scheme and protocol. The object tracking module, runs on IP camera, provides object tracking information generation, object tracking information distribution and similarity comparison function. On the other hand, the tracking management module, runs on video control server, provides realtime object tracking reception, object tracking information retrieval and IP camera control functions. The proposed object tracking scheme allows comprehensive framework that can be used in a diverse range of application, because it doesn't rely on the particular surveillance system or object tracking techniques.

A Suggestion for Worker Feature Extraction and Multiple-Object Tracking Method in Apartment Construction Sites (아파트 건설 현장 작업자 특징 추출 및 다중 객체 추적 방법 제안)

  • Kang, Kyung-Su;Cho, Young-Woon;Ryu, Han-Guk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.40-41
    • /
    • 2021
  • The construction industry has the highest occupational accidents/injuries among all industries. Korean government installed surveillance camera systems at construction sites to reduce occupational accident rates. Construction safety managers are monitoring potential hazards at the sites through surveillance system; however, the human capability of monitoring surveillance system with their own eyes has critical issues. Therefore, this study proposed to build a deep learning-based safety monitoring system that can obtain information on the recognition, location, identification of workers and heavy equipment in the construction sites by applying multiple-object tracking with instance segmentation. To evaluate the system's performance, we utilized the MS COCO and MOT challenge metrics. These results present that it is optimal for efficiently automating monitoring surveillance system task at construction sites.

  • PDF

Towards Real-time Multi-object Tracking in CPU Environment (CPU 환경에서의 실시간 동작을 위한 딥러닝 기반 다중 객체 추적 시스템)

  • Kim, Kyung Hun;Heo, Jun Ho;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.192-199
    • /
    • 2020
  • Recently, the utilization of the object tracking algorithm based on the deep learning model is increasing. A system for tracking multiple objects in an image is typically composed of a chain form of an object detection algorithm and an object tracking algorithm. However, chain-type systems composed of several modules require a high performance computing environment and have limitations in their application to actual applications. In this paper, we propose a method that enables real-time operation in low-performance computing environment by adjusting the computational process of object detection module in the object detection-tracking chain type system.

Sector Based Scanning and Adaptive Active Tracking of Multiple Objects

  • Cho, Shung-Han;Nam, Yun-Young;Hong, Sang-Jin;Cho, We-Duke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.6
    • /
    • pp.1166-1191
    • /
    • 2011
  • This paper presents an adaptive active tracking system with sector based scanning for a single PTZ camera. Dividing sectors on an image reduces the search space to shorten selection time so that the system can cover many targets. Upon the selection of a target, the system estimates the target trajectory to predict the zooming location with a finite amount of time for camera movement. Advanced estimation techniques using probabilistic reason suffer from the unknown object dynamics and the inaccurate estimation compromises the zooming level to prevent tracking failure. The proposed system uses the simple piecewise estimation with a few frames to cope with fast moving objects and/or slow camera movements. The target is tracked in multiple steps and the zooming time for each step is determined by maximizing the zooming level within the expected variation of object velocity and detection. The number of zooming steps is adaptively determined according to target speed. In addition, the iterative estimation of a zooming location with camera movement time compensates for the target prediction error due to the difference between speeds of a target and a camera. The effectiveness of the proposed method is validated by simulations and real time experiments.

Area Classification, Identification and Tracking for Multiple Moving Objects with the Similar Colors (유사한 색상을 지닌 다수의 이동 물체 영역 분류 및 식별과 추적)

  • Lee, Jung Sik;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.477-486
    • /
    • 2016
  • This paper presents the area classification, identification, and tracking for multiple moving objects with the similar colors. To do this, first, we use the GMM(Gaussian Mixture Model)-based background modeling method to detect the moving objects. Second, we propose the use of the binary and morphology of image in order to eliminate the shadow and noise in case of detection of the moving object. Third, we recognize ROI(region of interest) of the moving object through labeling method. And, we propose the area classification method to remove the background from the detected moving objects and the novel method for identifying the classified moving area. Also, we propose the method for tracking the identified moving object using Kalman filter. To the end, we propose the effective tracking method when detecting the multiple objects with the similar colors. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.