• Title/Summary/Keyword: Multiple-input-multiple-output

Search Result 1,145, Processing Time 0.028 seconds

Analysis of Efficiencies for Multiple-Input Multiple-Output Wireless Power Transfer Systems

  • Kim, Sejin;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.126-133
    • /
    • 2016
  • Wireless power transfer (WPT) efficiencies for multiple-input multiple-output (MIMO) systems are formulated with a goal of achieving their maximums using Z matrices. The maximum efficiencies for any arbitrarily given configurations are obtained using optimum loads, which can be determined numerically through adequate optimization procedures in general. For some simpler special cases (single-input single-output, single-input multiple-output, and multiple-input single-output) of the MIMO systems, the efficiencies and optimum loads to maximize them can be obtained using closed-form expressions. These closed-form solutions give us more physical insight into the given WPT problem. These efficiencies are evaluated theoretically based on the presented formulation and also verified with comparisons with circuit- and EM-simulation results. They are shown to lead to a good agreement. This work may be useful for construction of the wireless Internet of Things, especially employed with energy autonomy.

Nonorthogonal multiple access multiple input multiple output communications with harvested energy: Performance evaluation

  • Toi Le-Thanh;Khuong Ho-Van
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.432-445
    • /
    • 2024
  • This paper demonstrates improved throughput and energy efficiency of wireless communications by exploiting nonorthogonal multiple access (NOMA), multiple input-multiple output (MIMO), and radio frequency energy harvesting (EH) technologies. To assess the performance of NOMA MIMO communications with EH (MMe), we consider the nonlinear characteristics of EH devices and propose explicit expressions for throughput and outage probability. Based on our results, the system performance is significantly mitigated by EH nonlinearity and is considerably improved by increasing the number of antennas. Additionally, by appropriately adjusting the system parameters, our NOMA MMe innovation can avert complete outages while optimizing system performance. Moreover, the results demonstrate the superiority of the NOMA MMe over its orthogonal multiple access MMe counterparts.

Input-Series Multiple-Output Auxiliary Power Supply Scheme Based on Transformer-Integration for High-Input-Voltage Applications

  • Meng, Tao;Ben, Hongqi;Wei, Guo
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.439-447
    • /
    • 2012
  • In this paper, an input-series auxiliary power supply scheme is proposed, which is suitable for high input voltage and multiple-output applications. The power supply scheme is based on a two-transistor forward topology, all of the series modules have a common duty ratio, all the switches are turned on and off simultaneously, and the whole circuit has a single power transformer. It does not require an additional controller but still achieves efficient input voltage sharing (IVS) for each series module through its inherent transformer-integration strategy. The IVS process of this power supply scheme is analyzed in detail and the design considerations for the related parameters are given. Finally, a 100W multiple-output auxiliary power supply prototype is built, and the experimental results verify the feasibility of the proposed scheme and the validity of the theoretical analysis.

3-D Multiple-Input Multiple-Output Interferometric ISAR Imaging (3차원 Multiple-Input Multiple-Output 간섭계 ISAR 영상형성기법)

  • Kang, Byung-Soo;Bae, Ji-Hoon;Yang, Eun-Jung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.564-571
    • /
    • 2015
  • In this paper, we propose a multiple-input, multiple-output(MIMO) interferometric radar network system to generate three-dimensional (3-D) MIMO interferometric inverse synthetic aperture radar(InISAR) image. In the MIMO interferometric radar network system, the MIMO InISAR image can be formed by an incoherent summation of multiple bistatic InISAR images that show 3-D scatterers of a target observed at different bistatic interfermetric configurations, respectively. Because bistatic-sccattering physics of a target at different viewpoints are visible in the 3-D MIMO InISAR image, it can provide various scatterering physics properties of a target, and can be used for target classification as a useful feature vector. Simulations validate that our proposed method successfully finds locations of scatterers of a target in MIMO radar interferometric network system.

MIMO-FTN Transceiver Structure Using W-ZF Method (W-ZF 기법을 이용한 MIMO-FTN 송수신 구조 연구)

  • Seo, Jung-hyun;Jung, Ji-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1291-1298
    • /
    • 2017
  • In this paper, we propose a decoding method that improves the transmission rate and reliability by integrating MIMO(Multiple Input Multiple Output) communication scheme using turbo code and FTN(Faster Than Nyquist) scheme among high rate and high reliability wireless communication schemes in wireless communication. The existing MIMO-FTN(Multiple Input Multiple Output-Faster Than Nyquist) scheme based on hierarchical space-time coded method induced data rate loss due to the application of the space-time trellis coding scheme to remove adjacent symbol interference due to FTN scheme. To solve these problems, this paper proposes a method using W-ZF(Weighted-Zero Forcing) which overcomes the disadvantages of ZF(Zero Forcing) scheme in MIMO-FTN scheme using ZF scheme. In this paper, we compared the performance and the transmission rate of the MIMO-FTN scheme based on the hierarchical space-time coding, the MIMO-FTN scheme using W-ZF and the SISO-FTN scheme. As a result, the MIMO-FTN scheme using the W-ZF scheme is two times better than the other two schemes.

Compensation Algorithm of Arrival Time Mismatch in the Space-Time Coded Systems

  • Kim, Min-Hyuk;Choi, Suk-Soon;Jung, Ji-Won;Lee, Seong-Ro;Cho, Han-Na;Choi, Myeong-Soo
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.353-357
    • /
    • 2008
  • One objective in developing the next generation of wireless communication systems is to increase data rates and reliability. A promising way to achieve this is to combine multiple-input and multiple-output signal processing with a space-time coding scheme, which offers higher coding and diversity gains and improves the spectrum efficiency and reliability of a wireless communication system. It is noted, however, that time delay differences and phase differences among different channels increase symbol interference and degrade system performance. In this letter, we investigate phase differences and their effects on multiple-input and multiple-output systems, and propose a compensation algorithm for the Rayleigh fading model to minimize their effects.

Recursive Nullspace Calculation for Multiuser MIMO Systems (다중 사용자 MIMO 시스템을 위한 순차적 영공간 계산)

  • Joung, Jin-Gon;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1238-1243
    • /
    • 2007
  • The computational complexity for the zero-forcing (ZF)-based multiuser (MU) multiple-input multiple-output(MIMO) preprocessing matrices can be immoderately large as the number of transmit antennas or users increases. In this paper, we show that the span of singular vector space of a matrix can be obtained from the singular vectors of the parted rows of that matrix with computational saving and propose a computationally efficient recursive-algorithm for achieving the ZF-based preprocessing matrices. Analysis about the complexities shows that a new recursive-algorithm can lighten the computational load.

The Phase Estimation Algorithm of Arrival Phase Differences in Space-Time Coded Communication

  • Jung, Ji-Won;Huang, Xinping;Caron, Mario;Kim, Min-Hyuk;Kim, Ki-Man;Yun, Young
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.680-683
    • /
    • 2006
  • One objective in developing the next generation of wireless communication systems is to increase data rates and reliability. A promising way to achieve this is to combine multiple-input and multiple-output signal processing with a space-time coding scheme, which offers higher coding and diversity gains and improves the spectrum efficiency and reliability of a wireless communication system. It is noted, however, that time delay differences and phase differences among different channels increase symbol interference and degrade system performance. In this letter, we investigate phase differences and their effects on multiple-input and multiple-output systems, and propose a compensation algorithm for the Rayleigh fading model to minimize their effects.

  • PDF

An Efficient User Selection Algorithm in Downlink Multiuser MIMO Systems with Zero-Forcing Beamforming (하향링크 다중 사용자 MIMO 시스템에서의 Zero-Forcing 빔 형성을 이용한 효과적인 사용자 선택 기법)

  • Go, Hyun-Sung;Oh, Tae-Youl;Choi, Seung-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6A
    • /
    • pp.494-499
    • /
    • 2009
  • In this paper, we provide an efficient method of user selection for achieving the maximum system throughput in downlink multiuser Multiple-Input Multiple-Output (MIMO) systems. A proposed method is for selecting a fine user set only with powers of each user channel and angles between them. This algorithm is simpler than SUS because there is no considering about the optimal value of correlation. The proposed method finds the user set toward maximizing system throughput, so it has high performance.

Co-located and space-shared multiple-input multiple-output antenna module and its applications in 12 × 12 multiple-input multiple-output systems

  • Longyue Qu;Haiyan Piao;Guohui Dong
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.203-212
    • /
    • 2023
  • In this study, we developed a co-located and space-shared multiple-input multiple-output (MIMO) antenna module with a modular design and high integration level. The proposed antenna pair includes a half-wavelength loop antenna and a dipole-type antenna printed on the front and back sides of a compact modular board. Owing to their modal orthogonality, these two independent antenna elements are highly self-isolated and free of additional decoupling components, even though they are assembled at the same location and within the same space. Thus, the proposed antenna is attractive in 5G MIMO systems. Furthermore, the proposed co-located and space-shared MIMO antenna module was employed in a 5G smartphone to verify their radiation and diversity performances. A 12 × 12 MIMO antenna system was simulated and fabricated using the proposed module. Based on the results, the proposed module can be employed in large-scale MIMO antenna systems for current and future terminal devices owing to its high integration, compactness, simple implementation, and inherent isolation.