• 제목/요약/키워드: Multiple-assignable-causes

검색결과 5건 처리시간 0.017초

Economic Design of a Moving Average Control Chart with Multiple Assignable Causes when Two Failures Occur

  • Cben, Yun-Shiow;Yu, Fong-Jung
    • International Journal of Quality Innovation
    • /
    • 제2권1호
    • /
    • pp.69-86
    • /
    • 2001
  • The economic design of control charts has been researched for over four decades since Duncan proposed the concept in 1956. Few studies, however, have focused attention on the economic design of a moving average (MA) control chart. An MA control chart is more effective than the Shewhart chart in detecting small process shifts [9]. This paper provides an economic model for determining the optimal parameters of an MA control chart with multiple assignable causes and two failures in the production process. These parameters consist of the sample size, the spread of the control limit and the sampling interval. A numerical example is shown and the sensitivity analysis shows that the magnitude of shift, rate of occurrence of assignable causes and increasing cost when the process is out of control have a more significant effect on the loss cost, meaning that one should more carefully estimate these values when conducting an economic analysis.

  • PDF

지수가중이동평균관리도의 경제적 최적모수의 선정 (Selection of the economically optimal parameters in the EWMA control chart)

  • 박창순;원태연
    • 응용통계연구
    • /
    • 제9권1호
    • /
    • pp.91-109
    • /
    • 1996
  • 지수가중이동평균관리도는 최근 들어 공정검색과 공정수정에 널리 이용되고 있으나 모수의 설정에 관한 연구는 많지 않다. 관리도의 설계는 통계적 설계와 경제적 설계로 분류한다. 통계적 설계는 허용된 제1종 오류하에서 제2종 오류를 최소화하는데 반해 경제적 설계는 공정에서 발생하는 모든 가능한 비용을 고려한 비용함수를 최소화한다. 이 논문에서는 지수가중이동평균관리도의 통계적 설계와 함께 경제적 설계를 정의한 다음 각 설계에서의 최적모수를 선정하여 결과를 비교한다. 경제적 설계에서 설정된 최적모수는 통계적 설계와 다르게 나타남을 알 수 있고 특히 가중치의 값은 통계적 설계에서 보다 항상 큰 값으로 나타난다. 경제적 설계에서는 고려하는 이상원인의 수에 따라 단일이상원인과 다중이상원인 모형으로 구분하여 설계한다. 다중이상원인의 평균적 개념으로 적용되는 단일이상원인 모형에서는 실제 다중이상원인이 존재할 때에 잘못된 판단을 할 수 있음을 보이고 있다.

  • PDF

다중이상원인하의 경제적 품질비용 정책결정 (Determination of Quality Cost Policy under the Multiple Assignable Causes)

  • 김계완;박지연;윤덕균
    • 한국산업경영시스템학회:학술대회논문집
    • /
    • 한국산업경영시스템학회 2002년도 춘계학술대회
    • /
    • pp.1-8
    • /
    • 2002
  • At present, company has to produce a product that consumer like with a competitive price, a good quality, and a fitting time to supply. Process control and qualify control are very important to supply with a product uniformly and inexpensively In this paper, the characteristic of product quality is monitored by control chart during the machining process and construction of quality control cycle is considered to divide into two types in this case that different assignable causes lead to shifts having different magnitudes. Then we are intended to find a process shift magnitude which has economical quality cost policy and are considered to quality cost functions to find a process shift magnitude. Those costs are categorized into the well-known categories of prevention, appraisal, and internal failure and external failure. This paper ends with numerical examples that demonstrate the usefulness of the model.

  • PDF

다중이상원인하의 경제적 품질비용 정책결정 (Determination of Quality Cost Policy under Multiple Assignable Causes)

  • 김계완;김용필;박지연;윤덕균
    • 산업경영시스템학회지
    • /
    • 제26권1호
    • /
    • pp.7-16
    • /
    • 2003
  • At present, company has to produce a product that consumer like with a competitive price, a good quality, and a fitting time to supply. Process control and quality control are very important to supply with a product uniformly and inexpensively. Process control is given much weight in the quality control in manufacturing system. Statistical process controls(SPC) that are used in process generally have major impact on manufacturing, product design activities, and process development potentially. Control charts in statistical process control method can be interpreted the data from quality characteristics in production process and discriminated between chance variation and assignable variation in process. In addition, control chart can be used to monitor the process output and detect when changes in the inputs are required to bring the process back to an in-control state. The models that relate the influential inputs to process outputs help determine the nature and magnitude of the adjustments required. In this paper, the characteristic of product quality is monitored by control chart during the machining process and construction of quality control cycle is considered to divide into two types in this case that different assignable causes lead to shifts having different magnitudes. Then we are intended to find a process shift magnitude which has economical quality cost policy and are considered to quality cost functions to find a process shift magnitude. Those costs are categorized into the well-known categories of prevention, appraisal, and internal failure and external failure. This paper ends with numerical examples that demonstrate the usefulness of the model.

An Economic Design of the Chart with Variable Sample Size Scheme

  • Park, Chang-Soon;Ji, Seon-Su
    • Journal of the Korean Statistical Society
    • /
    • 제23권2호
    • /
    • pp.403-420
    • /
    • 1994
  • An economic design of the $\bar{X}-R$ chart using variable sample size (VSS) scheme is proposed in this paper. In this design the sample size at each sampling time changes according to the values of the previous two sample statistics, sample mean and range. The VSS scheme uses large sample if the sample statistics appear near inside the control limits and smaller sample otherwise. The set of process parameters, such as the sampling interval, control limits and the sample sizes, are chosen to minimize the expected cost per hour. The efficiency of the VSS scheme is compared to the fixed sample size one for cases where there is multiple of assignable causes. Percent reductions of the expected cost in the VSS design are calculated for some given sets of cost parameters. It is shown that the VSS scheme improves the confidence of the procedure and performs statistically better in terms of the number of false alarms and the average time to signal, respectively.

  • PDF