• Title/Summary/Keyword: Multiple-Criteria Decision Making

Search Result 126, Processing Time 0.029 seconds

An MCDM-Based Integrated Economic Analysis Model for the New Telecommunication Services (다기준 의사결정기법을 활용한 신규통신 서비스의 총체적 사업성 분석)

  • Chang, Haeng-Gorn;Choi, Sang-Hyun;Choi, Yong-Sun;Kim, Soung-Hie
    • IE interfaces
    • /
    • v.5 no.2
    • /
    • pp.3-17
    • /
    • 1992
  • In this study, an integrated economic analysis model to analyze the new telecommunication services is developed. This model considers both the technological and managerial aspests altogether with respect to the profit and public benefit criteria. To encounter the various dynamically changing environments and evaluation criteria, multiple criteria decision making (MCDM)techniques are employed. The model consists of three stages; The first stage surveys related formal or informal data, generates analysis alternatives, and performs acceptabillty test in view of marketing. The second stage generates executive alternatives for each acceptable analysis alternative and checks the executionability in view of telecommunication technologies. The third stage performs the final integrated economic analysis including the profitability analysis. This study offers a basis for the future development of decision support system or expert system on the economic analysis of the new telecommunication services.

  • PDF

An Integrated AHP-VIKOR Methodology for Facility Layout Design

  • Shokri, Hamidreza;Ashjari, Behzad;Saberi, Morteza;Yoon, Jin Hee
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.389-405
    • /
    • 2013
  • A facility layout design (FLD) problem can be generally introduced as assignment of facilities (departments) to a site such that a set of criteria are satisfied or some objectives are minimized (maximized). Hence, it can be considered as a multi-criteria problem due to the presence of qualitative criteria such as maintenance or flexibility and quantitative criteria such as the total cost of handling material. The VIKOR method was developed to solve multiple criteria decision making problems with conflicting and non-commensurable (different units) criteria, assuming that compromising is acceptable for conflict resolution, the decision maker wants a solution that is the closest to the ideal, and the alternatives are evaluated according to all established criteria. This paper proposes a hierarchical analytic hierarchy process (AHP) and VIKOR approach to solve the FLD problem. A computer-aided layout-planning tool is adopted to generate the facility layout problems, as well as their quantitative data. The qualitative performance measures are weighted by AHP. VIKOR is then used to solve the FLD problem. Finally, the proposed integrated procedure is applied to three real-time examples.

Prioritization of Information and Communication Technologies for Strategic Standardization (정보통신 중점기술의 표준화 우선순위 결정방법)

  • Koo, Kyoung-Cheol;Woo, Hoon-Shik;Jo, In-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • To visualize a strategic plan including resource allocations and standardization schedules, it is important to set priorities among information and communication technologies(ICTs) standardization work areas(SWAs). This ranking process involves decision making process with multiple criteria which results a complex selection problem. In this study, analytic hierarchy process(AHP) is employed and applied to solve this decision making problem. The processes and results are illustrated for an effective strategic plan in standardization decision processes.

A Study on the Selection of Construction Method by Decision Making Method (의사결정기법을 통한 건축공법선정에 관한 연구)

  • Yang, Keek-Young;Yoon, Yer-Wan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.1
    • /
    • pp.147-154
    • /
    • 2002
  • In the Past, The selection of individual method of construction was done by head of construction site or an experienced person very frequently. By doing this, The wrong selection of construction method without exact adjudication of construction site situation lead to increasing of cost and extension of construction term. Finally it will effect all over the construction process. Especially, In case of underground construction in the beginning, there are a lot of a variable factor and it also effect on the entire construction process and it need very careful process. The purpose of this study is to present the best suitable methodology for selection of construction method by considering potential risk of construction method and variables together with external condition for underground construction. The purpose of this study Is to select the most suitable construction method by analysing potential conditions(construction site situation and client request in designing ) To do this, We prepared arrangement rule to arrange the conditions for construction method. And thin make checklist of the analyzing construction method. Though above process, To expect the risk of individual construction method using above risk checklist and using Analytic Hierarchy process among Multiple-Criteria Decision making, the professional opinions is to be adapted. By doing this, it can lead and select the most suitable construction method considering the data which get from risk density test.

A Comparison Study on Supplier and Green Supplier Selection Problems using Fuzzy AHP and BSC (Fuzzy AHP와 BSC를 이용한 공급자와 그린 공급자 선정 문제의 비교 연구)

  • Seo, Kwang-Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.4
    • /
    • pp.117-124
    • /
    • 2011
  • Supplier selection is one of the most important activities of a company. This importance is increased even more by new strategies in a supply chain, because of the key role suppliers perform in terms of quality, costs and services which affect the outcome in the buyer's company. In addition, green production has become an important issue for almost every manufacturer and will determine the sustainability of a manufacturer. Therefore a performance evaluation system for supplier and green suppliers is necessary to determine the suitability of suppliers to cooperate with the company. Supplier and green supplier selection is a multiple criteria decision making problem in which the objectives are not equally important. In practice, vagueness and imprecision of the goals, constraints and parameters in these problems make the decision making complicated. The objective of this study is to construct a decision-making process using fuzzy analytic hierarchy process (FAHP) and balanced scorecard (BSC) for evaluating supplier and green suppliers in the manufacturing industry. The BSC concept is applied to define the hierarchy with four major perspectives and performance indicators are selected for each perspective. FAHP is then proposed in order to tolerate vagueness and ambiguity of information. Finally, FAHP is applied to facilitate the solving process. With the proposed approach, manufacturers can have a better understanding of the capabilities that supplier and green supplier must possess and can evaluate and select the most suitable supplier for cooperation.

A Study on Selection Method of COTS Component Based on the Software Quality Measurement (소프트웨어 품질측정에 의한 상용컴포넌트 선정방법에 관한 연구)

  • Oh, Kie-Sung;Lee, Nam-Yong;Rhew, Sung-Yul
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.897-902
    • /
    • 2002
  • Because of rapid evolution of software technique, numerous software professionals have been concerned with component based development methodologies. However, it is hard to find out a systematic technique for the selection of COTS (Commercial Off The Shelf) component in consumer position. Up to date, the major of component quality evaluation is object-oriented metric based evaluation methodology. But this paper present four step process and evaluation criteria based on MCDM (Multiple Criteria Decision Making) technique for optimal COTS component selection in consumer position. We considered funtionality, efficiency, usability based on IS0/IEC 9126 for Quality measurement and executed practical analysis about commercial EJB component in internet. This paper show that the proposed selection technique is applicable to optimal COTS component selection.

Application of AHP to Select for Priority of Permanent Traffic Volume Survey Site (AHP를 적용한 상시 교통량 조사 지점 선정 우선순위 결정에 관한 연구)

  • Oh, Ju-Sam;Lim, Sung-Han;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.21-30
    • /
    • 2005
  • Traffic volume data have been used for the plan, the design, and the operation of highway. Since 1955, traffic survey has been nation- widely carried out at national highway and the regular survey in national highway has been conducted at the intersections of highways. However, it is critical issue to select the priority of the regular survey because it is almost impossible to conduct regular survey at all intersections of national highways. In this study, MCDM(Multiple Criteria Decision Making) using AHP(Analytic Hierarchy Process) was applied to decide the priority of the regular survey. The following standard variables for determining the priority was selected the highway plan variables[AADT, VKT, Peak Hourly Volume, Location of highway from Urban], the highway design variables[Volume(pcu), Directional Traffic Volume, Heavy Vehicle Rate], and the highway operation variables[Speed, Density, V/C]. The standard variables were quantified and normalized. Using the Eigen vector method, the weighted values of each hierarchy based on the pair-wise comparison values from the questionnaire survey were calculated. The selection of the priority of regular survey was dependent on the size of the product of the weighted values for each hierarchy and the normalized values for the standard variables. Finally, the priority of regular survey of the intersections of national highways was determined according to the order in the size of the product of two values.

  • PDF

A Desirability Function-Based Multi-Characteristic Robust Design Optimization Technique (호감도 함수 기반 다특성 강건설계 최적화 기법)

  • Jong Pil Park;Jae Hun Jo;Yoon Eui Nahm
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.199-208
    • /
    • 2023
  • Taguchi method is one of the most popular approaches for design optimization such that performance characteristics become robust to uncontrollable noise variables. However, most previous Taguchi method applications have addressed a single-characteristic problem. Problems with multiple characteristics are more common in practice. The multi-criteria decision making(MCDM) problem is to select the optimal one among multiple alternatives by integrating a number of criteria that may conflict with each other. Representative MCDM methods include TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution), GRA(Grey Relational Analysis), PCA(Principal Component Analysis), fuzzy logic system, and so on. Therefore, numerous approaches have been conducted to deal with the multi-characteristic design problem by combining original Taguchi method and MCDM methods. In the MCDM problem, multiple criteria generally have different measurement units, which means that there may be a large difference in the physical value of the criteria and ultimately makes it difficult to integrate the measurements for the criteria. Therefore, the normalization technique is usually utilized to convert different units of criteria into one identical unit. There are four normalization techniques commonly used in MCDM problems, including vector normalization, linear scale transformation(max-min, max, or sum). However, the normalization techniques have several shortcomings and do not adequately incorporate the practical matters. For example, if certain alternative has maximum value of data for certain criterion, this alternative is considered as the solution in original process. However, if the maximum value of data does not satisfy the required degree of fulfillment of designer or customer, the alternative may not be considered as the solution. To solve this problem, this paper employs the desirability function that has been proposed in our previous research. The desirability function uses upper limit and lower limit in normalization process. The threshold points for establishing upper or lower limits let us know what degree of fulfillment of designer or customer is. This paper proposes a new design optimization technique for multi-characteristic design problem by integrating the Taguchi method and our desirability functions. Finally, the proposed technique is able to obtain the optimal solution that is robust to multi-characteristic performances.

Decision Making for Train Maintenance Facility using Simulation and Entropy measurement (시뮬레이션과 엔트로피 척도를 이용한 철도 차량기지 대안 선정)

  • Kim, Kyung-Rok;Chun, Hyun-Jae;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2809-2817
    • /
    • 2010
  • The scholarly concern of train industry has been improved, since country focuses on this field. Especially, train maintenance facility has been studied for construction, because the facility is important to inspect the train that transports passenger and cargo. Various operation plans and criteria are considered to build train maintenance facility. In this paper, the decision making of train maintenance facility for construction is studied and analyzed with simulation, because mathematical theory is restricted to consider various operation plans and criteria. Through simulation, we analyze warm-up after selecting dependent factors, and extract data. The data is used to select a alternative in this problem, Multiple Attribute Decision Making(MADM). Previous study is difficult, complex and subjective for decision making. However, entropy measurement we used help decision maker for decision making, easily, simply, and objectively. This method can have decision maker choose the best alternative in case the train maintenance facility construction is fast revitalized.

Priority Decision of Small Hydropower Development using Spatial Multi-Criteria Decision Making (공간 다기준의사결정을 활용한 소수력 개발의 우선순위 결정)

  • Kim, Gil-Ho;Yi, Choong-Sung;Yeo, Gyu-Dong;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1029-1038
    • /
    • 2009
  • Recently, it is expected that small hydropower (SHP) could potentially provide sufficient amounts of alternative energy in Korea where there is an abundance of potential sites and where social efforts are being made to reduce the emissions of green house gases. In the past, the resources survey for SHP development has been carried out using onsite surveys and paper maps, which incurred a great deal of time and cost. Furthermore, the tools for decision making such as determining development priorities or evaluating feasibility have been considered only economic aspect and focused on the performance characteristics of power generation. However, as the concept of sustainable development has been being advanced in recent years, especially focused on human-social, environmental and ecological in addition to economical sector; the consideration of these multiple criteria has become essential for sustainable SHP development. This study aims to propose the spatial multi-criteria decision making (MCDM) methodology for determining priorities among a number of locations on the planning stage of SHP development using AHP and GIS. The proposed methodology is applied for determining development priorities among the SHP locations in Cho River basin and this study presents the detailed spatial information data and the results of development priorities. As a fundamental work, this study will be beneficial to the future activation of SHP development and will help the decision making in evaluating the feasibility of SHP development.