• 제목/요약/키워드: Multiple sensors

검색결과 736건 처리시간 0.024초

특용작물의 산지판별을 위한 전자코 응용 (Application of Electronic Nose in Discrimination of the Habitat for Special Agricultural Products)

  • 노봉수;고재원;김상용;김수정
    • 한국식품과학회지
    • /
    • 제30권5호
    • /
    • pp.1051-1057
    • /
    • 1998
  • 영지, 참깨, 칡과 같은 특용작물의 수입산 또는 국내산인지의 여부를 확인하기 위하여 전자코를 사용하였다. 특용작물이 배출하는 가스성분을 아무런 전처리 과정 없이 12개의 conducting polymer sensor로 감지하고 여기서 얻어진 자료를 판별분석을 통하여 특용작물의 원산지가 수입산 또는 국내산인지를 판별할 수 있었다. 원산지를 모르는 시료(영지, 참깨)를 분석한 결과 이들 농산물이 수입산인지 국내산인지를 뚜렷하게 구별할 수 있었다.

  • PDF

다중상황 처리를 위한 RFID/USN 미들웨어 설계 (Design of RFID/USN Middleware for Poly-Context Process)

  • 김경옥;반경진;류남훈;장문석;김응곤
    • 한국전자통신학회논문지
    • /
    • 제4권2호
    • /
    • pp.101-107
    • /
    • 2009
  • 현대사회는 산업화로 인해 다양한 재해를 접하게 되고, 그 피해를 최소화하기 위해 많은 연구가 이루어지고 있다. 재난의 예방을 위해서는 위험 상황에 대한 정확한 판단과, 그 상황 발생에 즉각적인 대처가 가능한 시스템의 개발이 필요하다. 현재 유비쿼터스 환경하의 상황정보시스템에 대한 다양한 연구들이 진행되고 있다. 그러나 다중 상황에 대한 모니터링 및 처리가 가능한 시스템에 대한 연구가 미흡하며, 이로 인해 다중상황에 대한 신속한 대처가 이루어지지 않고 있다. 본 논문에서는 다중상황의 처리를 위해 각종 센서로부터 데이터를 취득하여 시간 마킹 처리 후 데이터베이스에 저장하고, 사용자의 요구에 따라 추상화된 Context를 사용자에게 제공할 수 있는 다중상황 처리를 위한 RFID/USN 미들웨어를 시스템을 설계한다.

  • PDF

u-Health 시스템에서 슬라이딩 윈도우 기반 스트림 데이터 처리 (Stream Data Processing based on Sliding Window at u-Health System)

  • 김태연;송병호;배상현
    • 한국정보전자통신기술학회논문지
    • /
    • 제4권2호
    • /
    • pp.103-110
    • /
    • 2011
  • u-Health 시스템의 센서들로부터 측정된 데이터에 대한 정확하고 에너지 효율적인 관리가 필요하다. 센서네트워크에서 대용량의 입력 스트림 데이터 전체를 데이터베이스에 모두 저장하여 한꺼번에 처리하는 것은 효율적이지 못하다. 본 논문에서는 u-Health 시스템 내 센서 네트워크의 에너지 효율성과 정확성을 고려하여 여러 센서에서 지속적으로 들어오는 다차원 스트림 데이터의 처리 성능을 높이고자 한다. 효율적인 입력 스트림 처리를 위해서 슬라이딩 윈도우 기반으로 질의를 처리하고 Mjoin 방법으로 다중 질의 계획을 수립한 후 역전파 알고리즘을 통해 저장 데이터를 축소하는 효율적인 처리 기법을 제안한다. 14,324개의 데이터 집합을 사용하여 실험한 결과 실제 입력되는 데이터보다 저장 공간의 18.3%를 축소함으로써 효과적임을 보였다.

원격 생체 측정 장치를 위한 다중 발신 코일 구동 드라이버 설계 (Design of a Multiple Transmit Coil Driver for Implantable Telemetry Devices)

  • 유영기
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.609-614
    • /
    • 2015
  • Implanted telemetry systems provide the ability to monitor different species of animals while they move within their cages. Species monitored include mice, rats, rabbits, dogs, pigs, primates, sheep, horses, cattle, and others. A miniature transmitter implanted in each animal measures one or more parameters. Parameters measured include arterial pressure, intra-pleural pressure, left ventricular pressure, intra-ocular pressure, bladder pressure, ECG, EMG, EEG, EOG, temperature, activity, and other parameters and transmits the data via radio frequency signals to a nearby receiver. Every conventional dedicated transmitter contains one or more sensors, cpu and battery. Due to the expected life of the battery, the measuring time is limited. To overcome these problems, electromagnetic inductive coupling based wireless power transmission technology using multiple transmit coils were proposed, with each coil having a different active area driven by the coil driver. In this research, a parallel resonance based coil driver and serial resonance based coil driver are proposed. From the experiments we see that the parallel coil driver shows better performance under a low impedance and multiple coils configuration. However, the serial coil driver is more efficient for high impedance transmit coils.

On a Multiple Data Handling Method under Online Parameter Estimation

  • Takeyasu, Kazuhiro;Amemiya, Takashi;Iino, Katsuhiro;Masuda, Shiro
    • Industrial Engineering and Management Systems
    • /
    • 제1권1호
    • /
    • pp.64-72
    • /
    • 2002
  • In the field of plant maintenance, data that are gathered by sensors on multiple machines are handled and analyzed. Online or pseudo online data handling is required on such fields. When the data occurrence speed exceeds the data handling speed, multiple data should be handled at a time (batch data handling or pseudo online data handling). If l amount of data are received at one time following N amount of data, how to estimate the new parameters effectively is a great concern. A new simplified calculation method, which calculates the N data's weights, is introduced. Numerical examples show that this new method has a fairly god estimation accuracy and the calculation time is less than 1/10 compared with the case when the whole data are re-calculated. Even under the restriction calculation ability in the apparatus is limited, this proposed method makes the failure detection of equipments possible in early stages with a few new coming data. This method would be applicable in many data handling fields.

Mobile u-healthcare system in IEEE 802.15.4 WSN and CDMA network environments

  • 토싱후이;이승철;이훈재;도경훈;정완영
    • 센서학회지
    • /
    • 제18권5호
    • /
    • pp.337-342
    • /
    • 2009
  • This paper describes a robust mobile u-healthcare system with multiple physiological signs measurement capability in real time with integration of WSN(wireless sensor network) technology and CDMA(code division multiple access) network. A cellular phone receives health data in WSN and performs local physiological signs analysis at a phone processor, and then transmits abnormal data to server for further detail or precise health signal evaluation by a medical doctor over a CDMA network. Physiological signs of the patients are continuously monitored, processed and analyzed locally at cellular phone process to produce useful medical information for diagnosis and tracking purposes. By local simple analysis in cellular phone processor we can save the data transmission cost in CDMA network. By using the developed integrate ubiquitous healthcare service architecture, patients can realize self-health checking so that the prevention actions can be taken earlier. Appropriate self-monitoring and self-management can cure disease and relieve pain especially for patients who suffer from chronic diseases that need long term observation.

A two-stage damage detection approach based on subset selection and genetic algorithms

  • Yun, Gun Jin;Ogorzalek, Kenneth A.;Dyke, Shirley J.;Song, Wei
    • Smart Structures and Systems
    • /
    • 제5권1호
    • /
    • pp.1-21
    • /
    • 2009
  • A two-stage damage detection method is proposed and demonstrated for structural health monitoring. In the first stage, the subset selection method is applied for the identification of the multiple damage locations. In the second stage, the damage severities of the identified damaged elements are determined applying SSGA to solve the optimization problem. In this method, the sensitivities of residual force vectors with respect to damage parameters are employed for the subset selection process. This approach is particularly efficient in detecting multiple damage locations. The SEREP is applied as needed to expand the identified mode shapes while using a limited number of sensors. Uncertainties in the stiffness of the elements are also considered as a source of modeling errors to investigate their effects on the performance of the proposed method in detecting damage in real-life structures. Through a series of illustrative examples, the proposed two-stage damage detection method is demonstrated to be a reliable tool for identifying and quantifying multiple damage locations within diverse structural systems.

Distributed beamforming with one-bit feedback and clustering for multi-node wireless energy transfer

  • Lee, Jonghyeok;Hwang, SeongJun;Hong, Yong-gi;Park, Jaehyun;Byun, Woo-Jin
    • ETRI Journal
    • /
    • 제43권2호
    • /
    • pp.221-231
    • /
    • 2021
  • To resolve energy depletion issues in massive Internet of Things sensor networks, we developed a set of distributed energy beamforming methods with one-bit feedback and clustering for multi-node wireless energy transfer, where multiple singleantenna distributed energy transmitters (Txs) transfer their energy to multiple nodes wirelessly. Unlike previous works focusing on distributed information beamforming using a single energy receiver (Rx) node, we developed a distributed energy beamforming method for multiple Rx nodes. Additionally, we propose two clustering methods in which each Tx node chooses a suitable Rx node. Furthermore, we propose a fast distributed beamforming method based on Tx sub-clustering. Through computer simulations, we demonstrate that the proposed distributed beamforming method makes it possible to transfer wireless energy to massive numbers of sensors effectively and rapidly with small implementation complexity. We also analyze the energy harvesting outage probability of the proposed beamforming method, which provides insights into the design of wireless energy transfer networks with distributed beamforming.

Resource allocation for Millimeter Wave mMIMO-NOMA System with IRS

  • Bing Ning;Shuang Li;Xinli Wu;Wanming Hao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권7호
    • /
    • pp.2047-2066
    • /
    • 2024
  • In order to improve the coverage and achieve massive spectrum access, non-orthogonal multiple access (NOMA) technology is applied in millimeter wave massive multiple-input multiple-output (mMIMO) communication network. However, the power assumption of active sensors greatly limits its wide applications. Recently, Intelligent Reconfigurable Surface (IRS) technology has received wide attention due to its ability to reduce power consumption and achieve passive transmission. In this paper, spectral efficiency maximum problem in the millimeter wave mMIMO-NOMA system with IRS is considered. The sparse RF chain antenna structure is designed at the base station based on continuous phase modulation. Furthermore, a joint optimization problem for power allocation, power splitting, analog precoding and IRS reconfigurable matrices are constructed, which aim to achieve the maximum spectral efficiency of the system under the constraints of user's quality of service, minimum energy harvesting and total transmit power. A three-stage iterative algorithm is proposed to solve the above mentioned non-convex optimization problems. We obtain the local optimal solution by fixing some optimization parameters firstly, then introduce the relaxation variables to realize the global optimal solution. Simulation results show that the spectral efficiency of the proposed scheme is superior compared to the conventional system with phase shifter modulation. It is also demonstrated that IRS can effectively assist mmWave communication and improve the system spectral efficiency.

Test and Simulation of an Active Vibration Control System for Helicopter Applications

  • Kim, Do-Hyung;Kim, Tae-Joo;Jung, Se-Un;Kwak, Dong-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.442-453
    • /
    • 2016
  • A significant source of vibration in helicopters is the main rotor system, and it is a technical challenge to reduce the vibration in order to ensure the comfort of crew and passengers. Several types of passive devices have been applied to conventional helicopters in order to reduce the vibration. In recent years, helicopter manufacturers have increasingly adopted active vibration control systems (AVCSs) due to their superior performance with lower weight compared with passive devices. AVCSs can also maintain their performance over aircraft configuration and flight condition changes. As part of the development of AVCS software for light civil helicopter (LCH) applications, a test bench is constructed and vibration control tests and simulations are performed in this study. The test bench, which represents the airframe, is excited using a pair of counter rotating force generators (CRFGs) and a multiple input single output (MISO) AVCS that consists of three accelerometer sensors and a pair of CRFGs; a filtered-x least mean square (LMS) algorithm is applied for the vibration reduction. First, the vibration control tests are performed with uniform sensor weights; then, the change in the control performance according to changes in the sensor weight is investigated and compared with the simulation results. It is found that the vibration control performance can be tuned through adjusting the weights of the three sensors, even if only one actuator is used.