• Title/Summary/Keyword: Multiple sensors

Search Result 724, Processing Time 0.028 seconds

Fault Detection and Diagnosis of CAN-Based Distributed Systems for Longitudinal Control of All-Terrain Vehicle(ATV) (무인 ATV의 종 방향 제어를 위한 CAN 기반 분산형 시스템의 고장감지 및 진단)

  • Kim, Soon-Tae;Song, Bong-Sob;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.983-990
    • /
    • 2008
  • This paper presents the fault detection and diagnosis(FDD) algorithm to enhance reliability of a longitudinal controller for an autonomous All-Terrain Vehicle(ATV). The FDD is designed to monitor and identify faults which may occur in distributed hardware used for longitudinal control, e.g., DSPs, CAN, sensors, and actuators. The proposed FDD is an integrated approach of decentralized and centralized FDD. While the former is processed in a DSP and suitable to detect faults in a single hardware, it is sensitive to noise and disturbance. On the other hand, the latter is performed via communication and it detects and diagnoses faults through analyzing concurrent performances of multiple hardware modules, but it is limited to isolate faults specifically in terms of components in the single hardware. To compensate for disadvantages of each FDD approach, two layered structure including both decentralized and centralized FDD is proposed and it allows us to make more robust fault detection and more specific fault isolation. The effectiveness of the proposed method will be validated experimentally.

Dynamic Service Composition and Development Using Heterogeneous IoT Systems

  • Ryu, Minwoo;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.91-97
    • /
    • 2017
  • IoT (Internet of Things) systems are based on heterogeneous hardware systems of different types of devices interconnected each other, ranging from miniaturized and low-power wireless sensor node to cloud servers. These IoT systems composed of heterogeneous hardware utilize data sets collected from a particular set of sensors or control designated actuators when needed using open APIs created through abstraction of devices' resources associated to service applications. However, previously existing IoT services have been usually developed based on vertical platforms, whose sharing and exchange of data is limited within each industry domain, for example, healthcare. Such problem is called 'data silo', and considered one of crucial issues to be solved for the success of establishing IoT ecosystems. Also, IoT services may need to dynamically organize their services according to the change of status of connected devices due to their mobility and dynamic network connectivity. We propose a way of dynamically composing IoT services under the concept of WoT (Web of Things) where heterogeneous devices across different industries are fully integrated into the Web. Our approach allows developers to create IoT services or mash them up in an efficient way using Web objects registered into multiple standardized horizontal IoT platforms where their resources are discoverable and accessible. A Web-based service composition tool is developed to evaluate the practical feasibility of our approach under real-world service development.

Evaluation of Low Power and High Speed CMOS Current Comparators

  • Rahman, Labonnah Farzana;Reaz, Mamun Bin Ibne;Marufuzzaman, Mohammad;Mashur, Mujahidun Bin;Badal, Md. Torikul Islam
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.317-328
    • /
    • 2016
  • Over the past few decades, CMOS current comparators have been used in a wide range of applications, including analogue circuits, MVL (multiple-valued logic) circuits, and various electronic products. A current comparator is generally used in an ADC (analog-to-digital) converter of sensors and similar devices, and several techniques and approaches have been implemented to design the current comparator to improve performance. To this end, this paper presents a bibliographical survey of recently-published research on different current comparator topologies for low-power and high-speed applications. Moreover, several aspects of the CMOS current comparator are discussed regarding the design implementation, parameters, and performance comparison in terms of the power dissipation and operational speed. This review will serve as a comparative study and reference for researchers working on CMOS current comparators in low-power and high-speed applications.

A New Object Region Detection and Classification Method using Multiple Sensors on the Driving Environment (다중 센서를 사용한 주행 환경에서의 객체 검출 및 분류 방법)

  • Kim, Jung-Un;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1271-1281
    • /
    • 2017
  • It is essential to collect and analyze target information around the vehicle for autonomous driving of the vehicle. Based on the analysis, environmental information such as location and direction should be analyzed in real time to control the vehicle. In particular, obstruction or cutting of objects in the image must be handled to provide accurate information about the vehicle environment and to facilitate safe operation. In this paper, we propose a method to simultaneously generate 2D and 3D bounding box proposals using LiDAR Edge generated by filtering LiDAR sensor information. We classify the classes of each proposal by connecting them with Region-based Fully-Covolutional Networks (R-FCN), which is an object classifier based on Deep Learning, which uses two-dimensional images as inputs. Each 3D box is rearranged by using the class label and the subcategory information of each class to finally complete the 3D bounding box corresponding to the object. Because 3D bounding boxes are created in 3D space, object information such as space coordinates and object size can be obtained at once, and 2D bounding boxes associated with 3D boxes do not have problems such as occlusion.

A Security Reference Model for the Construction of Mobile Banking Services based on Smart Phones

  • Shin, Yong-Nyuo;Shin, Woo-Chang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.229-237
    • /
    • 2011
  • As smart phones have become widely adopted, they have brought about changes in individual lifestyles, as well as significant changes in the industry. As the mobile technology of smart phones has become associated with all areas of industry, it is not only accelerating innovation in other industries such as shopping, healthcare service, education, and finance, but is also creating new markets and business opportunities. The preparation of thorough security measures for smart phones is increasing in demand. While offering excellent mobility and convenience, smart phones can be exposed to a range of violation threats. In particular, it is necessary to make efforts to develop a security system that can preemptively cope with potential security threats in the banking service area, which requires a high level of reliability. This paper suggests a security reference model that is considered for the smart phone-based joint mobile banking development project being undertaken by the Bank of Korea in 2010. The purpose of this study is to make a security reference model for a reliable smart phone-based mobile financial service, by recognizing the specific security threats directed toward smart phones, and providing countermeasures to these security threats. The proposed mobile banking security reference model is useful in improving system security by systematically analyzing information security threats to the mobile financial service, and by presenting the guideline for the preparation of countermeasures.

STEREO VISION-BASED FORWARD OBSTACLE DETECTION

  • Jung, H.G.;Lee, Y.H.;Kim, B.J.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.493-504
    • /
    • 2007
  • This paper proposes a stereo vision-based forward obstacle detection and distance measurement method. In general, stereo vision-based obstacle detection methods in automotive applications can be classified into two categories: IPM (Inverse Perspective Mapping)-based and disparity histogram-based. The existing disparity histogram-based method was developed for stop-and-go applications. The proposed method extends the scope of the disparity histogram-based method to highway applications by 1) replacing the fixed rectangular ROI (Region Of Interest) with the traveling lane-based ROI, and 2) replacing the peak detection with a constant threshold with peak detection using the threshold-line and peakness evaluation. In order to increase the true positive rate while decreasing the false positive rate, multiple candidate peaks were generated and then verified by the edge feature correlation method. By testing the proposed method with images captured on the highway, it was shown that the proposed method was able to overcome problems in previous implementations while being applied successfully to highway collision warning/avoidance conditions, In addition, comparisons with laser radar showed that vision sensors with a wider FOV (Field Of View) provided faster responses to cutting-in vehicles. Finally, we integrated the proposed method into a longitudinal collision avoidance system. Experimental results showed that activated braking by risk assessment using the state of the ego-vehicle and measuring the distance to upcoming obstacles could successfully prevent collisions.

Case Study on Integrated In-line Oil Monitoring Sensor for Machine Condition Monitoring of Steel Making Industry (통합형 인-라인 오일 모니터링 센서의 제철설비 현장 적용사례)

  • Kong, H.;Han, H.G.;Kwak, J.S.;Chang, W.S.;Im, G.G.
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.73-77
    • /
    • 2010
  • One of the important trends for condition monitoring in the 21st century is the development of smart sensors that will permit the cost-effective continuous monitoring of key machine equipments. In this study, an integrated in-line oil monitoring sensor assigned for continuous in situ monitoring multiple parameters of oil performance is presented. The sensor estimates oil deterioration based on the information about chemical degradation, total contamination, water content of oil and oil temperature. The oil oxidation is estimated by "chromatic ratio", total contamination is measured by the changes in optical density of oil in three optical wave-bands ('Red', 'Green' and 'Blue') and water content is evaluated as relative saturation of oil by water. In order to evaluate the sensor's effectiveness, the sensor was applied to several used oil samples in steel making industry and the results were compared with those measured by standard test methods.

Design of Fault-Tolerant Inductive Position Sensor (고장 허용 유도형 위치 센서 설계)

  • Paek, Sung-Kuk;Park, Byeong-Cheol;Noh, Myoung-Gyu D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.232-239
    • /
    • 2008
  • The position sensors used in a magnetic bearing system are desirable to provide some degree of fault-tolerance as the rotor position is necessary for the feedback control to overcome the open-loop instability. In this paper, we propose an inductive position sensor that can cope with a partial fault in the sensor. The sensor has multiple poles which can be combined to sense the in-plane motion of the rotor. When a high-frequency voltage signal drives each pole of the sensor, the resulting current in the sensor coil contains information regarding the rotor position. The signal processing circuit of the sensor extracts this position information. In this paper, we used the magnetic circuit model of the sensor that shows the analytical relationship between the sensor output and the rotor motion. The multi-polar structure of the sensor makes it possible to introduce redundancy which can be exploited for fault-tolerant operation. The proposed sensor is applied to a magnetically levitated turbo-molecular vacuum pump. Experimental results validate the fault-tolerance algorithm.

Effect of Ultrasonic Vibration on the Friction and Wear Characteristics of Aluminum Alloy (초음파 진동이 알루미늄 합금의 마찰 마모 특성에 미치는 영향)

  • Park, Jae-Nam;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.132-137
    • /
    • 2018
  • Ultrasonic waves are used in various applications in multiple devices, sensors, and high-power machinery, such as processing machines, welders, and cleaners, because the acoustic vibration frequencies are above the human audible frequency range. In ultrasonic machining, electrical energy at a high frequency of 20 kHz or more is converted into mechanical vibration by a vibrator and an amplifier. This technique allows instantaneous separation between a tool and a workpiece during machining, machining by pulse impulse force at the time of re-contact and minimizes the minute elastic deformations of the workpiece and machine tools due to the cutting effect. The Al7075 alloy used in this study is a typical aluminum alloy with superior strength that is mainly used in aircrafts, automobiles, and sporting goods. To investigate the optimal conditions for machining aluminum alloy using ultrasonic vibration, the present experiment utilized the Taguchi orthogonal array method, and the coefficient of friction was analyzed using the characteristics of the Taguchi technique. In ultrasonic friction and abrasion tests, the changes in the friction coefficient were measured in the absence of ultrasonic vibrations and at 28 kHz and 40 kHz. As a result, the most considerable influence on the friction coefficient was found to be the normal load, and the frequency of ultrasonic vibrations increases, the coefficient of friction increases. It was thus confirmed that the amount of wear increases when ultrasonic vibration is applied.

Development of a Public Transport-Based Location Management Platform for Preventing Missing Persons with Dementia (치매환자 실종방지를 위한 대중교통 기반 위치관리 플랫폼 개발)

  • Yeom, Se-Hyuk;Son, Sunyoung;Koo, Jungsik;Lee, Wanghoon
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.385-389
    • /
    • 2019
  • As we become an aging society, the number of dementia patients increases every year (an estimated 10% of the elderly, equating to 1.27 million in 30 years). In addition, 17,000 cases of missing people with disabilities and dementia are reported annually, indicating that more than one person per hour goes missing. More than 50% of those who are lost suffer injuries (some of which are fatal) within 24 hours after going missing. This is why measures are urgently required to ensure safety of the elderly. The core function of the disappearances prevention system proposed by this research group is to identify and respond early to deviations of dementia patients from their homes or facilities by identifying the location of the occurrence of disappearance, so that real-time notifications occur when a they leave the protected area. In addition, multiple receivers and public transportation integrated terminals share information when a patient leaves and uses public transportation to ensure their safe return. Most existing beacon-based positioning service models have fixed signal transmitters and are serviced in the form of transport receivers, but the proposed service model has users wearing the BLE beacon and receivers fixed.