• Title/Summary/Keyword: Multiple reservoir operation

Search Result 32, Processing Time 0.026 seconds

Analysis of Operation Plan by Multipurpose Supply for Heightened Agricultural Reservoir (둑높임저수지 다중용수공급에 따른 운영 방안 분석)

  • Kim, Hae Do;Lee, Kwang Ya;Park, Jong Yoon;Han, Guk Heon;Lim, Heung Chang
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.77-86
    • /
    • 2012
  • The aim of this study was to analyze the operation plan for heightened agricultural reservoir, in terms of water supply to downstream paddy fields and instreams. Operation of agricultural reservoir before the heightened reservoir project is easy to manage because of its single purpose, which is irrigation water supply. However, after proceeding the heightened project, there is needed to be set the operation rule because of its multiple purpose, which is water for irrigation and supply to the stream. In this paper, propose the method of design the criteria of supply to the stream and operation rule curve for the heightened reservoir. According to simulation results by proposed operating rule for the Gumsa reservoir, the yearly amount of water supply to the stream can be 2,588 thousand $m^3$, 3 times of the heightened space (2,588 thousand $m^3$).

  • PDF

Simplification of Monte Carlo Techniques for the Estimation of Expected Benefits in Stochastic Analysis of Multiple Reservoir System

  • Lee, Kwang-Man;Ko, Seok-Ku
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.57-70
    • /
    • 1994
  • For the system benefit optimization by considering risk or reliability from a multiple reservoir system using the Monte Carlo Technique, Many stochastically generated inflow series have to be used for the system analysis. In this study, the stochastically generated inflow series for the multiple reservoir system operation are preprocessed according to the considering system objectives and operating time periods. Through this procedure, several representative inflow series which have discrate probability levels and operation horizons are selected among the thousands of generated inflows. Then a deterministic optimization technique is applied to the hydropower energy estimation from the Han River Reservoir System which considers five reservoirs in this study. It took much less computational requirements than using the original Morite Carlo Technique, even though estimated result was almost similar.

  • PDF

Comparative Evaluation of Multipurpose Reservoir Operating Rules Using Multicriterion Decision Analysis Techniques

  • Ko, Seok-Ku;Lee, Kwang-Man;Ko, luk-Hwan
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.65-79
    • /
    • 1993
  • Selection of the best operating rule among a set of alternatives for a multipurpose reservoir system operation requires to evaluate many minor criteria in addition to the major objectives assessed to the system. These problems are sufficiently complex and difficult that they are beyond heuristic decision rules and experiences in case several noncommensurable multiple criteria are included in the evaluation. With the assistance of multicriterion decision analysis techniques, it is possible to select the best one among various alternatives by systematically comparing and ranking the alternatives with respect to the criteria of choice. Evaluation criteria for multipurpose reservoir system operating rules were identified and defined, and the multicriterion decision analysis techniques were applied to evaluate the four existing operating rules of the Chungju multipurpose project according to the identified nine multiple criteria. The application results show that the methodology is very efficient to select the best operation alternative among a finite number of operating rules with many evaluation criteria for a large-scale reservoir system operation.

  • PDF

Simplification of Monte Carlo Techniques for the Estimation of Expected Benefits in Stochastic Ananlysis of Multiple Reservoir Systems (저수지군으로부터 기대편익 산정을 위한 Monte Carlo 기법의 간략화)

  • 이광만;고석구
    • Water for future
    • /
    • v.26 no.2
    • /
    • pp.89-97
    • /
    • 1993
  • For the system benefit optimization by considering risk or reliability from a multiple reservoir system using the Monte Carlo technique, many stochastically generated inflow series have to be used for the system analysis. In this study, the stochastically generated inflow series for the multiple reservoir system operation are preprocessed according to the considered system objectives and operating time periods. Through this procedure, several representative inflow series which have discrete probability levels and operation horizons are selected among the thousands of generated inflows. Then a deterministic optimization technique is applied to the power energy estimation from the Han River Reservoirs System which considers five reservoirs in the study. It took much lower computational requirements then using the original Monte Carlo Technique, even though estimated result was almost similar.

  • PDF

An Evaluation of Multi-Reservoir Operation Weighting Coefficients Using Fuzzy DEA taking into account Inflow Variability (유입량의 변동성을 고려한 Fuzzy DEA 기반의 댐 군 연계운영 가중치 대안 평가)

  • Kim, Yong-Ki;Kim, Jae-Hee;Kim, Sheung-Kown
    • IE interfaces
    • /
    • v.24 no.3
    • /
    • pp.220-230
    • /
    • 2011
  • The multi-reservoir operation problem for efficient utilization of water resources involves conflicting objectives, and the problem can be solved by varying weight coefficient on objective functions. Accordingly, decision makers need to choose appropriate weight coefficients balancing the trade-offs among multiple objectives. Although the appropriateness of the weight coefficients may depend on the total amount of water inflow, reservoir operating policy may not be changed to a certain degree for different hydrological conditions on inflow. Therefore, we propose to use fuzzy Data Envelopment Analysis (DEA) to rank the weight coefficients in consideration of the inflow variation. In this approach, we generate a set of Paretooptimal solutions by applying different weight coefficients on Coordinated Multi-reservoir Operating Model. Then, we rank the Pareto-optimal solutions or the corresponding weight coefficients by using Fuzzy DEA model. With the proposed approach, we can suggest the best weight coefficients that can produce the appropriate Pareto-optimal solution considering the uncertainty of inflow, whereas the general DEA model cannot pinpoint the best weight coefficients.

Comparative Evaluation of Multipurpose Reservoir Operating Rules Using Multicriterion Decision Analysis Techniques (다기준 의사 분석 기법에 의한 다목적 저수지의 운영율 평가)

  • Go, Seok-Gu;Lee, Gwang-Man;Go, Ik-Hwan
    • Water for future
    • /
    • v.25 no.1
    • /
    • pp.83-92
    • /
    • 1992
  • Selection of the best operation rule among a set of alternatives for a multipurpose reservoir system operation requires to evaluate many minor criteria I n addition to the major objectives assessed to the system, These problems are sufficiently complex and difficult that they are beyond heuristic decision rules and experiences in case several noncommensurable multiple criteria are included in the evaluation. With the assistance of multicriterion decision analysis techniques, it is possible to select the best one among various alternatives by systematically comparing and ranking the alternatives with respect to the criteria of choice. Evaluation criteria for multipurpose reservoir system operating rules were identified and defined, and the multicriterion decision analysis techniques were applied to evaluate the fore developed operating rules of the existing Chungju multipurpose project according to the identified nine multiple criteria. The application result shows that the methodology is very efficient to select the best operation alternative among a finite number of operating rules with many evaluation criteria for a large scale reservoir system operation.

  • PDF

Basin-Wide Multi-Reservoir Operation Using Reinforcement Learning (강화학습법을 이용한 유역통합 저수지군 운영)

  • Lee, Jin-Hee;Shim, Myung-Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.354-359
    • /
    • 2006
  • The analysis of large-scale water resources systems is often complicated by the presence of multiple reservoirs and diversions, the uncertainty of unregulated inflows and demands, and conflicting objectives. Reinforcement learning is presented herein as a new approach to solving the challenging problem of stochastic optimization of multi-reservoir systems. The Q-Learning method, one of the reinforcement learning algorithms, is used for generating integrated monthly operation rules for the Keum River basin in Korea. The Q-Learning model is evaluated by comparing with implicit stochastic dynamic programming and sampling stochastic dynamic programming approaches. Evaluation of the stochastic basin-wide operational models considered several options relating to the choice of hydrologic state and discount factors as well as various stochastic dynamic programming models. The performance of Q-Learning model outperforms the other models in handling of uncertainty of inflows.

  • PDF

Development of Operating Rule Curve for Multipurpose Water Supply in Heightened Agricultural Reservoir (농업용 둑높임저수지의 다중 용수공급을 위한 이수운영기준곡선 개발)

  • Park, Jong-Yoon;Jung, In-Kyun;Lee, Kwang-Ya;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1389-1400
    • /
    • 2013
  • This study developed an operating rule curve (ORC) for multipurpose water supply (irrigation and environmental water) in heightened agricultural reservoir. Among the 20 reservoirs in improvement project of agricultural reservoir dam heightening, the 4 representative reservoirs (Ungyang, Gungchon, Yongam and Unam) were selected for the study according to the analysis of statistical characteristics. Available environmental water supply amounts during irrigation and non-irrigation periods, which is the range from release restricted water level to high water level were estimated by water balance analysis using reservoir operation model. Reliability, resiliency and vulnerability criteria for water system performance were used to assess the multiple water supply capacity. The ORC was presented as the percentile rank for the daily reservoir water level from the results of reservoir operation using the past couple of decades weather data. The water levels for each percentile were divided into 3 buffer sections representing drought (5~25%), normal (25~75%), and flood (75~95%) year to operate the heightened agricultural reservoir with ORC.

Determination of Weight Coefficients of Multiple Objective Reservoir Operation Problem Considering Inflow Variation (유입량의 변동성을 고려한 저수지 연계 운영 모형의 가중치 선정)

  • Kim, Min-Gyu;Kim, Jae-Hee;Kim, Sheung-Kown
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • The purpose of this study is to propose a procedure that will be able to find the most efficient sets of weight coefficients for the Geum-River basin in Korea. The result obtained from multi-objective optimization model is inherently sensitive to the weight coefficient on each objective. In multi-objective reservoir operation problems, the coefficient setting may be more complicated because of the natural variation of inflow. Therefore, for multi-objective reservoir operation problems, it may be important for modelers to provide reservoir operators with appropriate sets of weight coefficients considering the inflow variation. This study presents a procedure to find an appropriate set of weight coefficients under the situation that has inflow variation. The proposed procedure uses GA-CoMOM to provide a set of weight coefficient sets. A DEA-window analysis and a cross efficiency analysis are then performed in order to evaluate and rank the sets of weight coefficients for various inflow scenarios. This proposed procedure might be able to find the most efficient sets of weight coefficients for the Geum-River basin in Korea.