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Abstract

The analysis of large—scale water resources systems is often complicated by the presence of multiple
reservoirs and diversions, the uncertainty of unregulated inflows and demands, and conflicting objectives.
Reinforcement learning is presented herein as a new approach to solving the challenging problem of stochastic
optimization of multi-reservoir systems. The Q-Learning method, one of the reinforcement learning algorithms,
is used for generating integrated monthly operation rules for the Keum River basin in Korea. The Q-Learning
model is evaluated by comparing with implicit stochastic dynamic programming and sampling stochastic
dynamic programming approaches. Evaluation of the stochastic basin—-wide operational models considered
several options relating to the choice of hydrologic state and discount factors as well as various stochastic
dynamic programming models. The performance of Q-Learning model outperforms the other models in

handling of uncertainty of inflows.
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1. Introduction

As populations expand and economies develop, increasing competition for limited available water resources
is occurring among both intrabasin and interbasin users. This has brought greater attention to integrated river
basin management, requiring an extended scale of water management without losing model detail and
accuracy. However, the analysis of large—scale water resources systems is often complicated by the presence
of (1) multiple reservoirs and diversions, (2) the uncertainty of unregulated inflows and demands, and (3)
conflicting objectives (e.g. flood control vs. conservation purpose). In particular, the uncertainty of inflows
makes it impossible to precisely identify future impacts of current decision—-making. As a result, the efficient
operation of multiple reservoir systems is a difficult and challenging task for water resources managers and the
need for incorporating uncertainties in the planning and operation of multiple reservoir systems is important
and necessary.

A possible method for overcoming the computational challenge of stochastic optimization of multireservoir
systems is reinforcement learning. The search space over the range of the possible releases is reduced in
reinforcement learning so the algorithm is faster than SDP, yet it also finds better answers than the standard
SDP since it is much easier to incorporate the stochastic nature of the inflows. That is to say, acquiring apriori
knowledge of the stochastic structure of inflows in SDP is extremely difficult when complex spatial
correlations exist among the system inflows. SDP approaches require access to a multivariate time series

model to generate many synthetic inflow sequences to build when the available historical data are not
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sufficient. Contrast, reinforcement learning approaches do not require this process since they can find good

models through a learning process regardless of the complex stochastic structure of the inflows.

2. Reinforcement Learning System

A reinforcement learning system consists of the agent, environment, and their interactions. The learner or
decision maker is called the agent and everything except the agent is called the environment. The agent is
connected to its environment via action, reward, and state. Figure 1 depicts the components of a reinforcement

learning system and the agent—environment interaction.

Reinforcement learning generally consists of (1) a finite

number of state = {51,52,---,5,1,} (2) a finite set of actions
Agent A ={ay,ay--,a,} available to an agent (3) a reward rgiven

by the environment to the agent and (4) a state transition

probability P, which determines the probability that the

StatWQeward \fcﬁon environment will make a transition to one state to another

_ when the agent performs an action a.
Environmen t

The agent s supposed to find a policy

Figure 1. Reinforcement Learning m(s,a): §>A—[0,1], mapping  from  the state o

System probabilities of selecting each possible action. A policy is
denoted by (s,a) which is the probability of taking action @ in state s. If the environment is
stationary for simplicity, the probabilities of making state transitions or the immediate rewards do not
change over time. As a result, the objective of the agent in stationary case is to determine a

deterministic policy Wt(s) : S~ A, mapping from the state to action.

Assuming as optimal policy is followed thereafter, the optimal action-value function Q*(s,a) can be

defined as follows in terms of state—value function V*(S):
Q*(S,a):E(Tt+1+ Vs, )ls, = s,a, = a) (D

Watkins (1989) develop an algorithm known as Q-learning, which learns optimal action-value function,

Q*(s,a) is directly approximated from learned action-value function, Q(s,a), regardless of the policy
being followed. This algorithm has been proved early convergence (Sutton and Barto, 1998). The

Q-learning algorithm performs the updates by following equation.
Q*(St’at) = Qlsya,) +alr, +~ mf'XQ(SH bag 1)~ Qspa)] (2)

3. Case Study

The Keum River basin in Korea was chosen as a case study to demonstrate the applicability of the
reinforcement learning algorithm. The priorities of water allocation in the sub basin are instream flows,
domestic, industrial, agricultural water in the highest to the lowest. A deficit sharing policy was developed to
allocate water deficits in accordance with the type of demand and level of use. This policy provides a dynamic
approach to adjusting allocation of deficits considering the extent of demand satisfaction. According to the

policy, all of the water demands are satisfied when there is sufficient water available. If there is a shortage in
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water supply, it will first satisfy the first municipal demand block. Water continues to apply to the municipal
water demand blocks until it reaches 100 percent supply level. The allocation process continues in a similar
manner for the industrial water demands and then the agricultural water demands. The municipal and
industrial demands used in the optimization are derived by averaging the demands in water years 2001 and
2002 to reflect the current situations of Keum River basin. The agricultural demands are the average of 19
years data from 1983 to 2002. The instreamflow for sub basin are the 95% exceedence percentile of 19-year

historical flows for each sub basin and all other insreamflow requirements are provided by KOWACO.

3.1 Development of Model

In the study, the objectives are to minimize the water demand deficits and reservoir spills, and to maximize
the hydropower generation. These multiple objectives are combined into a single objective function for the
dynamic programming optimization using the weighting method. Equation (3) shows the immediate reward

(return) with the weighting method during every time.

N Generator Npiversion?N gare 100 X (Djk, _ U'k,) 2 N peservoir

w, P, — E Wa i / — Z w3 SP, (3
i=1 T k=1 Dy, =1

where, wi,wy, w3 are priority weighting factors for hydropower generation, diversions at the jth
diversion point and the k" deficit sharing block, and reservoir spill, respectively; Neenerator (= 3) is the
number of hydropower generators, Np ., sion (= 25) is the number of diversion points, Ng,,..(=4) is
number of deficit sharing blocks, and Np.erpei (= 2) is number of reservoirs; P; is the hydropower
generation at generator ¢ and SP; is the spilled water from reservoir [; D, is demand at diversion point
j and deficit sharing block k and Ujk is the actual diversion water at diversion point j and deficit

sharing block k.
Unlike other reservoir optimization model there is no simplification of the simulation procedure representing
the basin as precise as possible. In addition, the deficit sharing policy allocation along the river is based on the

equation (4).

N piversion !V share 100 x ( D, — U, )\

J

argmin w W
kooj=1 k=1 2k Djk’
/ Suare N gare
Ujk < Z Djk fOI‘j = lﬂQu"'7NDiversion ©
k=1 k=1
(/Tjk+1 =0 if (/}'k < Djk fOI‘j = 172u""NDiuer5ion and k= 1’27“'7NDz'version -1 (6)

3.2 Development of Operation Policy

Various stochastic dynamic programming approaches were applied to developing optimal coordinated
operating rules for the two reservoir system of the Keum River basin. Three stochastic dynamic programming
approaches were considered including implicit stochastic dynamic programming, SSDP, and reinforcement
learning(Q-Learning). The conventional SDP is excluded due to the complexity of deriving transition
probability of 12 sub basin inflows. Several options for defining the streamflow transition and discount factors

in SSDP and reinforcement learning are tested. Figure 2 and 3 show the examples of operation policies derived.
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Figure 2. Implicit Stochastic DP Figure 3. Reinforcement Learning

3.3 Simulation Analysis Table 1. Simulation scenarios
Table 1 specifies all the scenarios evaluated in - Discount Model
. . Model Hydrologic State
the study. The first column indicates the model Factor Label
option, such as CSUDP, SSDP, Q-Learning, and CSUDP I“?g:é’ré‘(’)irthe NA CSUDP
optimal policy. Hydrologic state in the second 0.95 SSDP095
e . SSDP NA
column specifies whether the model includes the 0.80 SSDP08
basin-wide flow condition as a system state, Q-Leaming NA 0.95 Q095
. . 0.70 Q07
whereas K-mean clustering and percentile .90 QP09
approach are used to classify the hydrologic state. Q-Leaming Percentile 0:80 QPOS
The options are only available for the Q-Learning . . 0.95 QK095
. . Q-Leaming K-mean clustering
model. Discount factors are applied to the SSDP 0.90 QK09
and Q-Learning models, with value ranging from Dem;)nll,msuc NA NA OPT

0.7 to 0.95. Performances of release policies
developed previously are evaluated using simulation analysis with the same performance measure.

The performances of the various operational rules were evaluated but some of the results are presented in
this paper. Several explicit stochastic optimization models including Q095, QK095, and SSDP095 are compared
with implicit stochastic optimization model (CSUDP) to investigate model performances. Operation of YongDam

and DaeChung reservoirs are compared for the various models in Figure 3 and 4.
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Figure 3. DaeChung reservoir storage change and release
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Figure 4. YongDam reservoir storage change and release

Figure 5 compares the monthly and total performance measures, showing that Q095 and OPT provide
consistency in monthly performance measures, which the other models provide less performance measures
during the low flow sequences. CSUDP has better performance in terms of large performance measure
reduction than QK095 and SSDP095. The total performance measure indicates that the conditional or
unconditional Q-Learning approaches outperform both CSUDP and SSDP. CSUDP and QK095 produced almost

the same amount of total performance measures although their monthly performance measures are different.
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Figure 5. Monthly and total performance evaluation

5. Conclusion

The overall conclusions drawn by this study can be briefly summarized in the followings.

1) Large scale basin—-wide reservoir operation rules were derived from Q-Learning models as well as
various explicit stochastic dynamic models. The serial and cross correlations of streamflow were
preserved by using historical streamflow data.

2) The primary advantage of the Q-Learning model is that predetermined transition probabilities of inflow
and post inference procedure to derive the operational rules are not required.

3) The operating rules by Q-Learning models outperformed the other rules derived by SSDP and implicit
stochastic optimization models.

4) A multiple linear or nonlinear regression model by implicit stochastic dynamic programming is well
performed in basin—wide reservoir operation. However, the releases from the reservoirs are fluctuated
according to the reservoir inflow condition.

5) Since SSDP was originally designed to use for the real time operation with a precise forecasting model

it is not suitable for deriving long—term optimal operation rules.
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