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AbstractAbstractAbstractAbstract

The analysis of large-scale water resources systems is often complicated by the presence of multiple

reservoirs and diversions, the uncertainty of unregulated inflows and demands, and conflicting objectives.

Reinforcement learning is presented herein as a new approach to solving the challenging problem of stochastic

optimization of multi-reservoir systems. The Q-Learning method, one of the reinforcement learning algorithms,

is used for generating integrated monthly operation rules for the Keum River basin in Korea. The Q-Learning

model is evaluated by comparing with implicit stochastic dynamic programming and sampling stochastic

dynamic programming approaches. Evaluation of the stochastic basin-wide operational models considered

several options relating to the choice of hydrologic state and discount factors as well as various stochastic

dynamic programming models. The performance of Q-Learning model outperforms the other models in

handling of uncertainty of inflows.
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1. Introduction1. Introduction1. Introduction1. Introduction

As populations expand and economies develop, increasing competition for limited available water resources

is occurring among both intrabasin and interbasin users. This has brought greater attention to integrated river

basin management, requiring an extended scale of water management without losing model detail and

accuracy. However, the analysis of large-scale water resources systems is often complicated by the presence

of (1) multiple reservoirs and diversions, (2) the uncertainty of unregulated inflows and demands, and (3)

conflicting objectives (e.g. flood control vs. conservation purpose). In particular, the uncertainty of inflows

makes it impossible to precisely identify future impacts of current decision-making. As a result, the efficient

operation of multiple reservoir systems is a difficult and challenging task for water resources managers and the

need for incorporating uncertainties in the planning and operation of multiple reservoir systems is important

and necessary.

A possible method for overcoming the computational challenge of stochastic optimization of multireservoir

systems is reinforcement learning. The search space over the range of the possible releases is reduced in

reinforcement learning so the algorithm is faster than SDP, yet it also finds better answers than the standard

SDP since it is much easier to incorporate the stochastic nature of the inflows. That is to say, acquiring apriori

knowledge of the stochastic structure of inflows in SDP is extremely difficult when complex spatial

correlations exist among the system inflows. SDP approaches require access to a multivariate time series

model to generate many synthetic inflow sequences to build when the available historical data are not

정회원한국건설기술연구원 수자원연구부 박사후연구원* E-mail: kolnidre@kict.re.kr
** 정회원인하대학교 환경토목공학부 토목공학과 교수E-mail: shim@inha.ac.kr



- 355 -

sufficient. Contrast, reinforcement learning approaches do not require this process since they can find good

models through a learning process regardless of the complex stochastic structure of the inflows.

2. Reinforcement Learning System2. Reinforcement Learning System2. Reinforcement Learning System2. Reinforcement Learning System

A reinforcement learning system consists of the agent, environment, and their interactions. The learner or

decision maker is called the agent and everything except the agent is called the environment. The agent is

connected to its environment via action, reward, and state. Figure 1 depicts the components of a reinforcement

learning system and the agent-environment interaction.

Reinforcement learning generally consists of (1) a finite

number of state    ⋯ (2) a finite set of actions

   ⋯ available to an agent (3) a reward given

by the environment to the agent and (4) a state transition

probability  which determines the probability that the

environment will make a transition to one state to another

when the agent performs an action .

The agent is supposed to find a policy

   ×→ , mapping from the state to

probabilities of selecting each possible action. A policy is

denoted by   which is the probability of taking action  in state  . If the environment is

stationary for simplicity, the probabilities of making state transitions or the immediate rewards do not

change over time. As a result, the objective of the agent in stationary case is to determine a

deterministic policy    → , mapping from the state to action.

Assuming as optimal policy is followed thereafter, the optimal action-value function   can be

defined as follows in terms of state-value function   :

       
        (1)

Watkins (1989) develop an algorithm known as Q-learning, which learns optimal action-value function,

  is directly approximated from learned action-value function, , regardless of the policy

being followed. This algorithm has been proved early convergence (Sutton and Barto, 1998). The

Q-learning algorithm performs the updates by following equation.

         

       (2)

3. Case Study3. Case Study3. Case Study3. Case Study

The Keum River basin in Korea was chosen as a case study to demonstrate the applicability of the

reinforcement learning algorithm. The priorities of water allocation in the sub basin are instream flows,

domestic, industrial, agricultural water in the highest to the lowest. A deficit sharing policy was developed to

allocate water deficits in accordance with the type of demand and level of use. This policy provides a dynamic

approach to adjusting allocation of deficits considering the extent of demand satisfaction. According to the

policy, all of the water demands are satisfied when there is sufficient water available. If there is a shortage in

FigureFigureFigureFigure 1111. Reinforcement Learning. Reinforcement Learning. Reinforcement Learning. Reinforcement Learning
SystemSystemSystemSystem
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water supply, it will first satisfy the first municipal demand block. Water continues to apply to the municipal

water demand blocks until it reaches 100 percent supply level. The allocation process continues in a similar

manner for the industrial water demands and then the agricultural water demands. The municipal and

industrial demands used in the optimization are derived by averaging the demands in water years 2001 and

2002 to reflect the current situations of Keum River basin. The agricultural demands are the average of 19

years data from 1983 to 2002. The instreamflow for sub basin are the 95% exceedence percentile of 19-year

historical flows for each sub basin and all other insreamflow requirements are provided by KOWACO.

3.1 Development of Model3.1 Development of Model3.1 Development of Model3.1 Development of Model

In the study, the objectives are to minimize the water demand deficits and reservoir spills, and to maximize

the hydropower generation. These multiple objectives are combined into a single objective function for the

dynamic programming optimization using the weighting method. Equation (3) shows the immediate reward

(return) with the weighting method during every time.


  

 

  


 


  

 


×  



 
  



 (3)

where,  are priority weighting factors for hydropower generation, diversions at the 


diversion point and the  deficit sharing block, and reservoir spill, respectively;     is the

number of hydropower generators,     is the number of diversion points,    is

number of deficit sharing blocks, and    is number of reservoirs;  is the hydropower

generation at generator  and   is the spilled water from reservoir ;  is demand at diversion point

 and deficit sharing block  and  is the actual diversion water at diversion point  and deficit

sharing block .

Unlike other reservoir optimization model there is no simplification of the simulation procedure representing

the basin as precise as possible. In addition, the deficit sharing policy allocation along the river is based on the

equation (4).


 

  




  

 


×  



(4)


  

 

 ≤ 
  

 

    ⋯  (5)

              ⋯     ⋯    (6)

3.2 Development of Operation Policy3.2 Development of Operation Policy3.2 Development of Operation Policy3.2 Development of Operation Policy

Various stochastic dynamic programming approaches were applied to developing optimal coordinated

operating rules for the two reservoir system of the Keum River basin. Three stochastic dynamic programming

approaches were considered including implicit stochastic dynamic programming, SSDP, and reinforcement

learning(Q-Learning). The conventional SDP is excluded due to the complexity of deriving transition

probability of 12 sub basin inflows. Several options for defining the streamflow transition and discount factors

in SSDP and reinforcement learning are tested. Figure 2 and 3 show the examples of operation policies derived.
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Figure 2. Implicit Stochastic DPFigure 2. Implicit Stochastic DPFigure 2. Implicit Stochastic DPFigure 2. Implicit Stochastic DP Figure 3. Reinforcement LearningFigure 3. Reinforcement LearningFigure 3. Reinforcement LearningFigure 3. Reinforcement Learning

3.3 Simulation Analysis3.3 Simulation Analysis3.3 Simulation Analysis3.3 Simulation Analysis

Table 1 specifies all the scenarios evaluated in

the study. The first column indicates the model

option, such as CSUDP, SSDP, Q-Learning, and

optimal policy. Hydrologic state in the second

column specifies whether the model includes the

basin-wide flow condition as a system state,

whereas K-mean clustering and percentile

approach are used to classify the hydrologic state.

The options are only available for the Q-Learning

model. Discount factors are applied to the SSDP

and Q-Learning models, with value ranging from

0.7 to 0.95. Performances of release policies

developed previously are evaluated using simulation analysis with the same performance measure.

The performances of the various operational rules were evaluated but some of the results are presented in

this paper. Several explicit stochastic optimization models including Q095, QK095, and SSDP095 are compared

with implicit stochastic optimization model (CSUDP) to investigate model performances. Operation of YongDam

and DaeChung reservoirs are compared for the various models in Figure 3 and 4.

FigureFigureFigureFigure 3333. DaeChung reservoir storage change and release. DaeChung reservoir storage change and release. DaeChung reservoir storage change and release. DaeChung reservoir storage change and release

Model Hydrologic State
Discount
Factor

Model
Label

CSUDP
Inflow to the

reservoir
NA CSUDP

SSDP NA
0.95 SSDP095

0.80 SSDP08

Q-Learning NA
0.95 Q095

0.70 Q07

Q-Learning Percentile
0.90 QP09

0.80 QP08

Q-Learning K-mean clustering
0.95 QK095

0.90 QK09

Deterministic
DP

NA NA OPT

TableTableTableTable 1111. Simulation scenarios. Simulation scenarios. Simulation scenarios. Simulation scenarios
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FigureFigureFigureFigure 4444. YongDam reservoir storage change and release. YongDam reservoir storage change and release. YongDam reservoir storage change and release. YongDam reservoir storage change and release

Figure 5 compares the monthly and total performance measures, showing that Q095 and OPT provide

consistency in monthly performance measures, which the other models provide less performance measures

during the low flow sequences. CSUDP has better performance in terms of large performance measure

reduction than QK095 and SSDP095. The total performance measure indicates that the conditional or

unconditional Q-Learning approaches outperform both CSUDP and SSDP. CSUDP and QK095 produced almost

the same amount of total performance measures although their monthly performance measures are different.

5. Conclusion5. Conclusion5. Conclusion5. Conclusion

The overall conclusions drawn by this study can be briefly summarized in the followings.

1) Large scale basin-wide reservoir operation rules were derived from Q-Learning models as well as

various explicit stochastic dynamic models. The serial and cross correlations of streamflow were

preserved by using historical streamflow data.

2) The primary advantage of the Q-Learning model is that predetermined transition probabilities of inflow

and post inference procedure to derive the operational rules are not required.

3) The operating rules by Q-Learning models outperformed the other rules derived by SSDP and implicit

stochastic optimization models.

4) A multiple linear or nonlinear regression model by implicit stochastic dynamic programming is well

performed in basin-wide reservoir operation. However, the releases from the reservoirs are fluctuated

according to the reservoir inflow condition.

5) Since SSDP was originally designed to use for the real time operation with a precise forecasting model

it is not suitable for deriving long-term optimal operation rules.

FigureFigureFigureFigure 5555. Monthly and total performance evaluation. Monthly and total performance evaluation. Monthly and total performance evaluation. Monthly and total performance evaluation
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