• 제목/요약/키워드: Multiple natural frequencies

검색결과 104건 처리시간 0.027초

부분구조합성법을 이용한 대형선박엔진의 진동분석 (Vibration Analysis for a Huge Marine Engine using a Substructure Synthesis Method)

  • 이재환;정종하;김재실;박형호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.651-657
    • /
    • 2001
  • This article explains the theory of multiple mode/physical coordinate synthesis method in order to analyze the dynamic characteristics for an huge marine engine. The theory leads to make a simulation code. The natural frequencies obtained from the simulation code is compared to those from a commercial analysis software, ANSYS. The simulation code is well reviewed.

  • PDF

축방향 왕복운동을 하는 외팔보의 동적 안정성 해석 (Dynamic Stability Analysis of Axially Oscillating Cantilever Beams)

  • 현상학;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.322-327
    • /
    • 1996
  • Dynamic stability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived and transformed into non-dimensional ones. The equations include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Using the equations, the multiple scale perturbation method is employed to obtain a stability diagram. The stability diagram shows that relatively large unstable regions exist around the frequencies of the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the diagram is proved by direct numerical simulations of the dynamic system.

  • PDF

Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory

  • Bagdatli, Suleyman M.
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.281-298
    • /
    • 2015
  • In this study, nonlinear transverse vibrations of tensioned Euler-Bernoulli nanobeams are studied. The nonlinear equations of motion including stretching of the neutral axis and axial tension are derived using nonlocal beam theory. Forcing and damping effects are included in the equations. Equation of motion is made dimensionless via dimensionless parameters. A perturbation technique, the multiple scale methods is employed for solving the nonlinear problem. Approximate solutions are applied for the equations of motion. Natural frequencies of the nanobeams for the linear problem are found from the first equation of the perturbation series. From nonlinear term of the perturbation series appear as corrections to the linear problem. The effects of the various axial tension parameters and different nonlocal parameters as well as effects of different boundary conditions on the vibrations are determined. Nonlinear frequencies are estimated; amplitude-phase modulation figures are presented for simple-simple and clamped-clamped cases.

Vibration-based damage detection in wind turbine towers using artificial neural networks

  • Nguyen, Cong-Uy;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • 제5권4호
    • /
    • pp.507-519
    • /
    • 2018
  • In this paper, damage assessment in wind-turbine towers using vibration-based artificial neural networks (ANNs) is numerically investigated. At first, a vibration-based ANNs algorithm is designed for damage detection in a wind turbine tower. The ANNs architecture consists of an input, an output, and hidden layers. Modal parameters of the wind turbine tower such as mode shapes and frequencies are utilized as the input and the output layer composes of element stiffness indices. Next, the finite element model of a real wind-turbine tower is established as the test structure. The natural frequencies and mode shapes of the test structure are computed under various damage cases of single and multiple damages to generate training patterns. Finally, the ANNs are trained using the generated training patterns and employed to detect damaged elements and severities in the test structure.

사장교 케이블의 장력 추정을 위한 인공신경망 모델 개발 (Development of Artificial Neural Network Model for Estimation of Cable Tension of Cable-Stayed Bridge)

  • 김기중;박유신;박성우
    • 한국산학기술학회논문지
    • /
    • 제21권3호
    • /
    • pp.414-419
    • /
    • 2020
  • 본 연구에서는 사장교의 케이블 가속도계로부터 확보한 방대한 계측데이터의 활용을 확대하고자 인공지능 기반의 케이블 장력 추정 모델을 개발하였다. 케이블 장력 추정 모델은 진동법에 따른 장력 추정 과정에서 고유진동수를 판정할 수 있는 알고리즘을 핵심으로 하며 학습데이터 구성에 적합하고 판정 결과에 대한 성능이 확보될 수 있도록 입력층, 은닉층, 출력층으로 구성되는 인공신경망(Artificial Neural Network)을 적용하였다. 인공신경망의 학습데이터는 케이블 가속도 계측데이터를 진동수로 변환 후 구성하였으며 고유진동수를 중심으로 일정한 패턴을 갖는 특성을 활용하여 기계학습을 진행하였다. 학습데이터 구성 시 다수 패턴의 고유진동수를 대표할 수 있도록 다양한 크기의 진폭을 갖는 진동수를 사용하고 일정 수준으로 진동수를 누적하여 사용할 경우 고유진동수에 대한 판정 성능이 개선됨을 확인하였다. 장력 추정 모델의 성능을 판단하기 위해 계측분석 기술자에 의해 추정한 장력의 관리기준과 비교하였다. 케이블 가속도계로부터 확보한 139개의 진동수를 입력값으로 사용하여 검증을 수행한 결과 실제 정답과 유사하게 고유진동수를 판정하였고 고유진동수에 의해 케이블의 장력을 추정한 결과는 96.4%의 수준으로 관리기준에 부합하는 결과를 보여주고 있다.

Exact vibration of Timoshenko beam combined with multiple mass spring sub-systems

  • El-Sayed, Tamer A.;Farghaly, Said H.
    • Structural Engineering and Mechanics
    • /
    • 제57권6호
    • /
    • pp.989-1014
    • /
    • 2016
  • This paper deals with the analysis of the natural frequencies, mode shapes of an axially loaded beam system carrying ends consisting of non-concentrated tip masses and three spring-two mass sub-systems. The influence of system design and sub-system parameters on the combined system characteristics is the major part of this investigation. The effect of material properties, rotary inertia and shear deformation of the beam system is included. The end masses are elastically supported against rotation and translation at an offset point from the point of attachment. Sub-systems are attached to center of gravity eccentric points out of the beam span. The boundary conditions of the ordinary differential equation governing the lateral deflections and slope due to bending of the beam system including developed shear force frequency dependent terms, due to the sub.system suspension, have been formulated. Exact formulae for the modal frequencies and the modal shapes have been derived. Based on these formulae, detailed parametric studies are carried out. The geometrical and mechanical parameters of the system under study have been presented in non-dimensional analysis. The applied mathematical model is presented to cover wide range of mechanical, naval and structural engineering applications.

Detection of damage in truss structures using Simplified Dolphin Echolocation algorithm based on modal data

  • Kaveh, Ali;Vaez, Seyed Rohollah Hoseini;Hosseini, Pedram;Fallah, Narges
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.983-1004
    • /
    • 2016
  • Nowadays, there are two classes of methods for damage detection in structures consisting of static and dynamic. The dynamic methods are based on studying the changes in structure's dynamic characteristics. The theoretical basis of this method is that damage causes changes in dynamic characteristics of structures. The dynamic methods are divided into two categories: signal based and modal based. The modal based methods utilize the modal properties consisting of natural frequencies, modal damping and mode shapes. As the modal properties are sensitive to changes in the structure, these can be used for detecting the damages. In this study, using dynamic method and modal based approach (natural frequencies and mode shapes), the objective function is formulated. Then, detection of damages of truss structures is addressed by using Simplified Dolphin Echolocation algorithm and solving inverse optimization problem. Many scenarios are used to simulate the damages. To demonstrate the ability of the algorithm, different truss structures with several multiple elements scenarios are tested using a few runs. The influence of the two different levels of noise in the modal data for these scenarios is also considered. The last example of this article is investigated using a different mutation. This mutation obtains the exact answer with fewer loops and population by limited computational effort.

축방향 왕복운동을 하는 집중질량을 가진 외팔보의 동적 안정성 해석 (Dynamic Stability Analysis of an Axially Oscillating Cantilever Beam with a Concentrated Mass)

  • 현상학;유홍희
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.118-124
    • /
    • 2001
  • The effect of a concentrated mass on the regions of dynamic instability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived using Kane's method and the assumed mode method. It is found that the bending stiffness is harmonically varied by axial inertia forces due to oscillating motion. Under the certain conditions between oscillating frequency and the natural frequencies, dynamic instability may occur and the magnitude of the bending vibration increase without bound. By using the multiple time scales method, the regions of dynamic instability are obtained. The regions of dynamic instability are found to be depend on the magnitude of a concentrated mass or its location.

  • PDF

Parallel computation for transcendental structural eigenproblems

  • Kennedy, D.;Williams, F.W.
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.635-644
    • /
    • 1997
  • The paper reviews the implementation and evaluation of exact methods for the computation of transcendental structural eigenvalues, i.e., critical buckling loads and natural frequencies of undamped vibration, on multiple instruction, multiple data parallel computers with distributed memory. Coarse, medium and fine grain parallel methods are described with illustrative examples. The methods are compared and combined into hybrid methods whose performance can be predicted from that of the component methods individually. An indication is given of how performance indicators can be presented in a generic form rather than being specific to one particular parallel computer. Current extensions to permit parallel optimum design of structures are outlined.

동적응답법을 이용한 다점 단순지지된 연속원통셸의 자유진동 해석 (A Free Vibration Analysis of the Continuous Circular Cylindrical Shell with the Multiple Simple Supports Using the Receptance Method)

  • 이영신;한창환
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.998-1008
    • /
    • 2000
  • The continuous circular cylindrical shells are widely used for the high performance structures of aircraft, spacecraft, missile, nuclear fuel rod shell etc.. In this paper, a method for the free vibration analysis of the continuous circular cylindrical shells with the multiple simple supports is developed by using the receptance method. With this method, the vibrational characteristics of the continuous system is analyzed by considering as a combined structure. The system receptance is also derided by the application of the equilibrium of forces and the continuity of displacements at the support points. The natural frequencies and mode shapes are calculated numerically and they are compared with the FEM results to improve the reliability of analytical solution. Numerical results on the 4-equal-span continuous circular cylindrical shell are presented in this paper.

  • PDF