• Title/Summary/Keyword: Multiple grounding

Search Result 21, Processing Time 0.025 seconds

Research on Grounding Resistance for the Grounding Plate Electrodes (각판상전극의 접지저항에 관한 연구)

  • Koh, Hee-Seog;Shin, Su-Han;Kim, Ju-Chan;Choi, Jong-Gyu
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.111-114
    • /
    • 2004
  • There are many electricity, electronics, and communication equipment which need to Grounding in the building. When electric current flows into a certain Grounding system in the same building, the potential of other Grounding system rises. This potential interference repuire surface potential of electrods by electrode shape. In this paper basic formula is deduced on the basis of both electrodes surface potential of Grounding electrode as a source of the potential interference and Grounding electrode which receive the potential interference. The degree of potential interference as multiple Grounding electrode is verified the simulated results by means of the simple model in advance.

  • PDF

Characteristic Mode Analysis and New Ground Approach At a Heat-sink for Reducing EM Radiation

  • Son, Seung-Han;Ahn, Chang-Hoi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.379-386
    • /
    • 2018
  • A heat-sink has been widely used to cool down the heat generated from an electronic device, but it can bring unwanted electromagnetic radiation which may cause EMI problems. We propose a systematic method to reduce the electromagnetic radiation by using the multiple grounding technique based on the grounding criteria and the theory of characteristic mode analysis. Our proposed method provides the insight to find the specific grounding positions which can be effectively reduced the radiation from the heat-sink. Numerical experiments are accomplished to validate this approach.

An experimental research about the grounding resistance of the mesh electrode in the model of water tank (메쉬접지극의 접지저항에 관한 실증연구)

  • Kim, Ju-Chan;Choi, Jong-Gyu;Lee, Chung-Sik;Koh, Hee-Seog
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.349-354
    • /
    • 2005
  • Recently, there are many equipment of electricity, electronics, and communication which need to grounding in the building. When the electric current flows into a certain grounding system in the same building, the potential rise of other grounding system is possible to be affected by its potential rise. This potential interference was affected by the surface potential, it is deeply related whit the electrode shape. In this paper, basic formula is deduced on the basis of both electrodes surface potential of grounding electrode in a source of the potential interference and groundidng electrode which receive the potential interference. Therefore the degree of potential interference as multiple groundidng electrode can be verified the simulated results by means of the simple model in advance. This is for investigating the grounding resistance of grounding electrodes, the experiment was performed with model-scale of the grounding system and the scaled model grounding system was to this experiment using a water tank of a stainless steel-hemisphere shape. since mesh electrodes have been widely in the general building, we're tried to analyze that this water tank model and it's simulation as well.

  • PDF

Proposition of Improved Neutral Grounding Method and Analytical Evaluation on Practicality in Underground Distribution System (지중배전시스템의 개선된 중성점 접지방식 제안과 실효성에 대한 해석적 평가)

  • Jeong, Seok-San;Lee, Jong-Beom;Jang, Seong-Whan;Kim, Yong-Kap;Kwon, Shin-Nam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.479-485
    • /
    • 2011
  • In 22.9kV underground distribution system, power cables are provided with multiple-point ground in which each neutral line of the distribution cable(A, B, C phases) and three-wire common grounded at every connecting section. But in such grounding methods, circulating current flows between the neutral wire and grounding wire. And power loss due to circulating current also occurs in all conductors. Therefore it is getting necessary reducing circulating current in underground distribution system. This paper presents improved grounding method to overcome such problems. The proposed grounding method eliminates circulating current in the neutral line effectively and is verified that there is no electrical problem or any ineffectiveness of operating protection systems. These analyses are carried out by EMTP/ATPDraw to compare each grounding methods in steady and transient state. This grounding method suggested in this paper can be applied on real distribution system after field tests considering elimination of circulating current was implemented.

Grounding Resistance and Current Characteristics of the Planar Earth Structure using Multiple Discharge Paths (다중방전 경로를 이용한 편상접지체의 접지저항 및 전류특성)

  • Kim, Young-Sun;Kim, Dong-Min;Lee, Ki-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1564-1570
    • /
    • 2016
  • This study proposes a newly modified form of existing ground electrodes in order to secure trust of grounding system for large current caused by a stroke of lightning. Proposed planar earth structure has a several needle electrodes around a circular rod and 4 plane electrodes in all directions. The plane electrodes are fused with the insulator on the linear rod, so that they're electrically isolated. The concept is to increase the discharge amount of earth structure using multiple discharge paths like needle and plane electrodes. To check the discharge efficiency of the suggested scheme, the discharge currents are compared with typically used two kinds of ground rods. To ensure accuracy in the measurement of the discharge current, the same material was used for the comparison model. Also, the ground resistance are simulated by CDEGS commercial software and the results are compared with measured data. Based on this kind of experimental study, the suggested ground rod can be used when designing a ground system or when constructing a ground system at the site.

Measurement and Analysis of Earth Resistivity for the Substation Grounding Design (변전소 접지설계를 위한 대지고유저항의 측정과 해석)

  • Han, P.;Kim, J.Y.;Choi, J.K.;Jung, G.J.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.807-812
    • /
    • 1997
  • For an equivalent uniform soil model to multiple-layered soil structure, ground depth, which is used in the calculation of equivalent resistivity, should be varied according to the size of grounding area. In case of 150 kV substation grounding design, 15 m of ground depth has been used and 25 m for 345 kV, But applying these ground depths can lead to errors in grounding resistance calculation, and these errors are coming from the poor representation of those depths to real soil resistivities. In this paper, the soil resistivity measurement techniques by Wenner method and grounding resistance calculation results by computer simulation were presented. Case studies contain the area from 3,000 to $30,000\;m^2$ and measuring space from of m to $100{\sim}250\;m$, Based of the computation results, 50 m, 60 m and 80 m of ground depth for less than 30, 40 and 70 m of equivalent hemispherical radius were proposed respectively.

  • PDF

Study on the Between the Grounding Resistance and Grounding Electrode using Mesh Grounding Electrodes and a Shielding Panel (메쉬접지전극과 차폐패넬을 이용한 접지저항 및 접지전극간의 영향에 관한 연구)

  • Leeg, Chung-sik;Cho, Moon-taek;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.230-236
    • /
    • 2015
  • In this paper, the electric potential of electrode surface is investigated by assuming them as two dimensional sets of point current sources. And, the simulated water tank is manufactured as a reduced scale of the earth. Henceforth, the adequate model electrode for test is decided to decrease experimental errors relevant to the limitation of the size of the water tank. The one of important things of this work, the deduction method of the potential interference factor is proposed, which used as the criterion of the potential interference according to the shape of conductors and the laying conditions, when multiple grounding conductors are situated at the same resistance grounding area. Also, the validity of this theory is verified from a numerical simulation of the grounding electrode to be used in experiments, and this study is realized by the verified theory and the simulated experiments.

Effects of Ground Faults on the Safety of Persons and Low-voltage Installations in 22.9 kV-Y Distribution Systems (22.9 kV-Y 계통에서 지락고장이 인체 및 저압설비의 안전에 미치는 영향)

  • Kim, Han-Soo;Chung, Jae-Hee;Kang, Kae-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.141-148
    • /
    • 2008
  • This paper presents experimental results on the safety of persons and protection of low-voltage equipments of the sub-station due to a single-phase ground fault in 22.9 kV-Y distribution system. In order to evaluate the hazard voltages and the stress voltage of the low-voltage(LV) equipment due to faults between high-voltage systems and earth based on the newly prescribed KS C IEC 60364 standard series, the verification tests in a 22.9[kV] neutral multiple grounding system were carried out. From the experimental results, we introduce serious problems causing some discomfort when applying KS C IEC 60364 standard series to the existing domestic distribution system and the effective protective measures against temporary overvoltages due to a ground fault in the common grounding which is combined the 22.9 kV-Y grounding and the customer's installation grounding are proposed. As a consequence, it was found that the equipotential bonding is an important prerequisite for the effectiveness of the protective measures for the safety of persons and LV equipment in the combined 22.9 kV-Y and low-voltage grounding system.

A Study on Collision Avoidance Action in the Situation of Encountering Multiple Ships by the Reserve Officer

  • Park, Deuk-Jin;Yim, Jeong-Bin;Yang, Hyeong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.346-351
    • /
    • 2018
  • The proportion of collision in the total marine accidents is high. The main causes of collisions are navigation rule violation, safety speed violation, neglected watch-keeping and improper collision avoidance action. There are two main ways of avoiding collision situations during maritime navigation: the method of altering course and reducing ship's speed. The purpose of this study is to analyze the result of the collision avoidance action of the reserve officer in case of encountering a multiple number of ships using the ship handling simulator. Full-mission ship handling simulator was used to experiment the situation scenarios that encountered multiple ships. After the experiment, the questionnaire about the experiment was investigated. A total of 50 subjects were participated in the experiment. Experimental results showed that the number of the experimenters who used the engine was 11 and the number of the experimenters who did not use the engine was 39. In the case of using the engine, there were 0 collision accident, 1 grounding accident, and 10 no accidents. However, when the engine was not used, there were 28 collision accidents, 2 grounding accidents, and 9 no accidents. The causes of these results can be found in the survey results. 74 % of the non used engine participants said they were hesitate to use the engine. As can be seen from these results, the reserve officer are hesitant to use the engine and need a way to get correct of it. Maritime course subject can emphasize the importance of using ship's engines and case study also can be it. So, It is considered that various case study scenario will need to developed by various tools in the future.

Effects of Defect Factors of Combine Header on Cutting Speed of Combine Header, Feeding Depth of Straw, and Cylinder Speed of Thresher (콤바인 예취부의 고장요인이 예취날의 평균 속도, 반송 두께, 탈곡통의 회전 속도에 미치는 영향)

  • Kim, Y.J.;Choi, C.H.;Mun, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.5
    • /
    • pp.324-331
    • /
    • 2007
  • The purpose of this study is to analysis effects of defect factors of combine header for cutting speed of combine header, feeding depth of straw, and cylinder speed of thresher. Measurement system for defect factors was consists of sensors to monitor the combine operation and I/O interface to convert the signals. Cutting speed of combine header, feeding depth of straw, cylinder speed of thresher were measured and analyzed. The data were collected from three paddy field during rice harvesting. The tests were conducted at different grounding speeds, lug troubles, and cutter condition. The one way ANOVA and the multiple comparison tests were performed. The results showed that the measured data were useful to monitor the defect factors of combine during harvesting. The faults conditions of grounding speeds, lug troubles, and cutter conditions affected cutting speeds, feeding depths and cylinder speeds of the combine. The data seem to be useful to analysis the faults conditions of combine header.