• Title/Summary/Keyword: Multiple flight vehicles

Search Result 30, Processing Time 0.023 seconds

A Study on Optimum Hybrid Post-Processing Method for Multiple Telemetry Streams (원격측정 다중 스트림 최적 혼합 후처리 기법 연구)

  • Kim, In Jong;Lee, Sungpil;Chang, Dukjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.616-624
    • /
    • 2019
  • In order to understand flying aircraft, satellite, missile, etc, a telemetry ground system is used to receive, record, and process the transmitted radio signal from vehicles. In some cases, a line-of-sight communication is not possible along to the trajectory of vehicles, and multipath fading result in a shade area of communication. A number of telemetry ground systems are installed to overcome this limitation, and acquire the transmitted signal seamlessly. The telemetry signals received by multiple independent ground systems have independent probability of errors since they experienced their own communication channels. In other words, we can exploit the independent error characteristics of received signals by processing them in a hybrid method. The optimum hybrid post-process method is proposed in this study, and applied to process telemetry signals acquired from flight tests.

State Estimation of Turbojet Engine Using Nonlinear Model (모델추정 기법을 이용한 터보제트엔진의 상태추정)

  • Kim, Jung-Hoe;Gim, Dong-Choon;Lee, Sang-Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.268-272
    • /
    • 2012
  • A propulsion controller for vehicles should be designed to overcome a sensor failure during a flight, and it is necessary to control the system properly at any circumstances. Therefore, the vehicles need to retain reliability on the sensor measurements by implementing extra sensors to replace the original control sensors in case of their failure. This paper presents the MIMO NARX model by simulation which substitutes measured values with estimated ones by the state estimation technique in case of a sensor failure in a turbojet engine. It is also presented that the NARX model can be adapted as an engine model in HILS equipments.

  • PDF

A Study on the Improvement of Searching Performance of Autonomous Flight UAVs Based on Flocking Theory (플로킹 이론 기반 자율정찰비행 무인항공기의 탐색성능 향상에 관한 연구)

  • Kim, Dae Woon;Seak, Min Jun;Kim, Byoung Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.419-429
    • /
    • 2020
  • In conducting a mission to explore and track targets using a number of unmanned aerial vehicles(UAVs), performance for that mission may vary significantly depending on the operating conditions of the UAVs such as the number of operations, the altitude, and what future flight paths each aircraft decides based on its current position. However, studies on the number of operations, operating conditions, and flight patterns of unmanned aircraft in these surveillance missions are insufficient. In this study, several types of flight simulations were conducted to detect and determine targets while multiple UAVs were involved in the avoidance of collisions according to various autonomous flight algorithms based by flocking theory, and the results were presented to suggest a more efficient/effective way to control a number of UAVs in target detection missions.

Real-Time Flight Testing for Developing an Autonomous Indoor Navigation System for a Multi-Rotor Flying Vehicle (실내 자율비행 멀티로터 비행체를 위한 실시간 비행시험 연구)

  • Kim, Hyeon;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.343-352
    • /
    • 2016
  • A multi-rotor vehicle is an unmanned vehicle consisting of multiple rotors. A multi-rotor vehicle can be categorized as tri-, quad-, hexa-, and octo-rotor depending on the number of the rotors. Multi-rotor vehicles have many advantages due to their agile flight capabilities such as the ability for vertical take-off, landing and hovering. Thus, they can be widely used for various applications including surveillance and monitoring in urban areas. Since multi-rotors are subject to uncertain environments and disturbances, it is required to implement robust attitude stabilization and flight control techniques to compensate for this uncertainty. In this research, an advanced nonlinear control algorithm, i.e. sliding mode control, was implemented. Flight experiments were carried out using an onboard flight control computer and various real-time autonomous attitude adjustments. The feasibility and robustness for flying in uncertain environments were also verified through real-time tests based on disturbances to the multi-rotor vehicle.

Integrated System of Multiple Real-Time Mission Software for Small Unmanned Aerial Vehicles (소형 무인 항공기를 위한 다중 실시간 미션 소프트웨어 통합 시스템)

  • Jo, Hyun-Chul;Park, Keunyoung;Jeon, Dongwoon;Jin, Hyun-Wook;Kim, Doo-Hyun
    • Telecommunications review
    • /
    • v.24 no.4
    • /
    • pp.468-480
    • /
    • 2014
  • The current-generation avionics systems are based on a federated architecture, where an electronic device runs a single software module or application that collaborates with other devices through a network. This architecture makes the internal system architecture very complicate, and gives rise to issues of Size, Weight, and Power (SWaP). In this paper, we show that the partitioning defined by ARINC 653 can efficiently deal with the SWaP issues on small unmanned aerial vehicles, where the SWaP issues are extremely severe. We especially install the integrated mission system on real hexacopter and quadcopter and perform successful flight tests. The presented software technology for integrated mission system and software consolidation methodology can provide a valuable reference for other SWaP sensitive real-time systems.

Development Technology Trends of Propulsion System in Unmanned Air Vehicles (무인기 추진시스템 개발 기술 동향)

  • Nak-Gon Baek;Juhyun Im
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.95-103
    • /
    • 2024
  • The propulsion technology used in unmanned Aerial Vehicles (UAVs)—which represent one of the most important development directions in aviation—is significantly related to their flight performance. This review paper discusses the different types of propulsion technologies used in unmanned aerial vehicles, namely the internal combustion engine (reciprocating, rotary, and gas turbine engines), the hybrid system, and the pure electric system. In particular, this paper presents and discusses the classification, working principles, characteristics, and critical technologies of these types of propulsion systems. These findings are expected to be helpful in establishing a development framework, comprehensive views, and multiple comparisons of future UAV propulsion systems.

Robustness for Scalable Autonomous UAV Operations

  • Jung, Sunghun;Ariyur, Kartik B.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.767-779
    • /
    • 2017
  • Automated mission planning for unmanned aerial vehicles (UAVs) is difficult because of the propagation of several sources of error into the solution, as for any large scale autonomous system. To ensure reliable system performance, we quantify all sources of error and their propagation through a mission planner for operation of UAVs in an obstacle rich environment we developed in prior work. In this sequel to that work, we show that the mission planner developed before can be made robust to errors arising from the mapping, sensing, actuation, and environmental disturbances through creating systematic buffers around obstacles using the calculations of uncertainty propagation. This robustness makes the mission planner truly autonomous and scalable to many UAVs without human intervention. We illustrate with simulation results for trajectory generation of multiple UAVs in a surveillance problem in an urban environment while optimizing for either maximal flight time or minimal fuel consumption. Our solution methods are suitable for any well-mapped region, and the final collision free paths are obtained through offline sub-optimal solution of an mTSP (multiple traveling salesman problem).

A case report of embryo transfer with air-transported fresh bovine embryo produced by multiple ovulation in Hanwoo

  • Sang-Yup Lee;Seong-Eun Heo;Won-Jae Lee
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.84-88
    • /
    • 2023
  • Because multiple ovulation embryo transfer (MOET) in cattle includes several benefits such as wide spreading of genetically superior offspring for long distance, this biotechnological method has been widely applied to Hanwoo. When the recipients are not stayed close after embryo recovery from donor, the embryos are moved to other farms via several vehicles (car, train, and airplane). However, air travel induces lesser oxygen level, increased vibration, lower air pressure, higher noise, and increased exposure of cosmic radiation to living things than ground level. It was still unknown that fresh embryos obtained from multiple ovulation of Hanwoo could maintain their fertility after being transported via air plane, the present case report introduced a clinical case of MOET in Hanwoo after shipping fresh embryos via air transportation. The donor was multi-ovulated via follicle-stimulating hormone series of injection, which was followed by a gonadotrophin-releasing hormone injection and artificial insemination twice. The embryos were recovered by the uterine flushing, packed in ministraws, transported to recipients for 6 h including 1 h air flight, and then transferred to the synchronized recipients. During pregnancy diagnosis of early gestation period, 5 of 7 recipients (71.4%) presented no heat signs and showed fetal sacs with fluid under transrectal ultrasonography. After normal gestation period, all recipients naturally delivered healthy calves (male n = 2 and female n = 3) without abortion, stillbirth, and premature birth. The present case report indicated that transportation of fresh embryos for MOET via domestic flight in Korea did not affect to their fertility.

Optimal path planning and analysis for the maximization of multi UAVs survivability for missions involving multiple threats and locations (다수의 위협과 복수의 목적지가 존재하는 임무에서 복수 무인기의 생존율 극대화를 위한 최적 경로 계획 및 분석)

  • Jeong, Seongsik;Jang, Dae-Sung;Park, Hyunjin;Seong, Taehyun;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.488-496
    • /
    • 2015
  • This paper proposes a framework to determine the routes of multiple unmanned aerial vehicles (UAVs) to conduct multiple tasks in different locations considering the survivability of the vehicles. The routing problem can be formulated as the vehicle routing problem (VRP) with different cost matrices representing the trade-off between the safety of the UAVs and the mission completion time. The threat level for a UAV at a certain location was modeled considering the detection probability and the shoot-down probability. The minimal-cost path connecting two locations considering the threat level and the flight distance was obtained using the Dijkstra algorithm in hexagonal cells. A case study for determining the optimal routes for a persistent multi-UAVs surveillance and reconnaissance missions given multiple enemy bases was conducted and its results were discussed.

Development of robust flocking control law for multiple UAVs using behavioral decentralized method (다수 무인기의 행위 기반 강인 군집비행 제어법칙 설계)

  • Shin, Jongho;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.859-867
    • /
    • 2015
  • This study proposes a robust formation flight control technique of multiple unmanned aerial vehicles(UAVs) using behavior-based decentralized approach. The behavior-based decentralized method has various advantages because it utilizes information of neighboring UAVs only instead of information of whole UAVs in the formation maneuvering. The controllers in this paper are divided into two methods: first one is based on position and velocity of neighboring UAVs, and the other one is based on position of neighboring UAVs and passivity technique. The proposed controllers assure uniformly ultimate boundedness of closed-loops system under time varying bounded disturbances. Numerical simulations are performed to validate the effectiveness of the proposed method.