• 제목/요약/키워드: Multiple feature detection

검색결과 163건 처리시간 0.018초

A Hybrid Soft Computing Technique for Software Fault Prediction based on Optimal Feature Extraction and Classification

  • Balaram, A.;Vasundra, S.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.348-358
    • /
    • 2022
  • Software fault prediction is a method to compute fault in the software sections using software properties which helps to evaluate the quality of software in terms of cost and effort. Recently, several software fault detection techniques have been proposed to classifying faulty or non-faulty. However, for such a person, and most studies have shown the power of predictive errors in their own databases, the performance of the software is not consistent. In this paper, we propose a hybrid soft computing technique for SFP based on optimal feature extraction and classification (HST-SFP). First, we introduce the bat induced butterfly optimization (BBO) algorithm for optimal feature selection among multiple features which compute the most optimal features and remove unnecessary features. Second, we develop a layered recurrent neural network (L-RNN) based classifier for predict the software faults based on their features which enhance the detection accuracy. Finally, the proposed HST-SFP technique has the more effectiveness in some sophisticated technical terms that outperform databases of probability of detection, accuracy, probability of false alarms, precision, ROC, F measure and AUC.

다중 특징점 검출을 이용한 보행인식 (Gait Recognition Using Multiple Feature detection)

  • 조운;김동현;백준기
    • 대한전자공학회논문지SP
    • /
    • 제44권6호
    • /
    • pp.84-92
    • /
    • 2007
  • 본 연구는 원거리에서 걸음걸이 (보행)의 특성을 분석하여 인간을 식별하는 보행인식 (gait recognition) 기술을 다중 특징점 기반으로 확장하여 인식률 및 오류 내성을 향상시키는 기술을 제안한다. 보다 구체적으로 i)움직임 검출, ii) 객체 영역 검출, iii) 머리 영역 검출, 그리고, iv) 능동 형태 모델을 이용하여 기본 알고리듬 (gait baseline algorithm)의 문제점인 전처리 과정없이 그림자 영향과 낮은 인식률을 개선하였다. 제안된 알고리듬은 HumanID Gait Challenge (HGCD) 데이터집합을 이용한 실험을 통해 환경 변화요인에도 강건한 인간 보행인식이 가능함을 확인할 수 있다.

Adaboost 최적 특징점을 이용한 차량 검출 (Vehicle Detection Using Optimal Features for Adaboost)

  • 김규영;이근후;김재호;박장식
    • 한국전자통신학회논문지
    • /
    • 제8권8호
    • /
    • pp.1129-1135
    • /
    • 2013
  • 본 논문에서는 최적 특징점 선택기법를 적용한 다중 최적 Adaboost 분류기를 기반으로 새로운 차량 검출 알고리즘을 제안한다. 제안하는 알고리즘은 2 가지 주요 모듈로 구성된다. 첫 번째는 설치된 카메라의 사이트 모델링을 이용한 영상 스케일링을 기반으로 하는 이론적 DDISF(Distance Dependent Image Scaling Factor) 모듈이며, 두 번째는 차량과 카메라의 거리에 대응하는 최적 Haar-like 특징을 활용하는 것이다. 실험 결과 제안하는 알고리즘은 기존의 방법에 비하여 인식 성능이 개선됨을 확인하였다. 제안하는 알고리즘은 96.43% 의 인식률과 약 3.77%의 오검출이 발생하였다. 이러한 성능은 기존의 표준 Adabooost 알고리즘에 비하여 각각 3.69%와 1.28% 의 성능을 개선한 것이다.

컨볼루션 멀티블럭 HOG를 이용한 퍼지신경망 보행자 검출 방법 (A Neuro-Fuzzy Pedestrian Detection Method Using Convolutional Multiblock HOG)

  • 명근우;곡락도;임준식
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1117-1122
    • /
    • 2017
  • Pedestrian detection is a very important and valuable part of artificial intelligence and computer vision. It can be used in various areas for example automatic drive, video analysis and others. Many works have been done for the pedestrian detection. The accuracy of pedestrian detection on multiple pedestrian image has reached high level. It is not easily get more progress now. This paper proposes a new structure based on the idea of HOG and convolutional filters to do the pedestrian detection in single pedestrian image. It can be a method to increase the accuracy depend on the high accuracy in single pedestrian detection. In this paper, we use Multiblock HOG and magnitude of the pixel as the feature and use convolutional filter to do the to extract the feature. And then use NEWFM to be the classifier for training and testing. We use single pedestrian image of the INRIA data set as the data set. The result shows that the Convolutional Multiblock HOG we proposed get better performance which is 0.015 miss rate at 10-4 false positive than the other detection methods for example HOGLBP which is 0.03 miss rate and ChnFtrs which is 0.075 miss rate.

Multiple Properties-Based Moving Object Detection Algorithm

  • Zhou, Changjian;Xing, Jinge;Liu, Haibo
    • Journal of Information Processing Systems
    • /
    • 제17권1호
    • /
    • pp.124-135
    • /
    • 2021
  • Object detection is a fundamental yet challenging task in computer vision that plays an important role in object recognition, tracking, scene analysis and understanding. This paper aims to propose a multiproperty fusion algorithm for moving object detection. First, we build a scale-invariant feature transform (SIFT) vector field and analyze vectors in the SIFT vector field to divide vectors in the SIFT vector field into different classes. Second, the distance of each class is calculated by dispersion analysis. Next, the target and contour can be extracted, and then we segment the different images, reversal process and carry on morphological processing, the moving objects can be detected. The experimental results have good stability, accuracy and efficiency.

Activity Object Detection Based on Improved Faster R-CNN

  • Zhang, Ning;Feng, Yiran;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제24권3호
    • /
    • pp.416-422
    • /
    • 2021
  • Due to the large differences in human activity within classes, the large similarity between classes, and the problems of visual angle and occlusion, it is difficult to extract features manually, and the detection rate of human behavior is low. In order to better solve these problems, an improved Faster R-CNN-based detection algorithm is proposed in this paper. It achieves multi-object recognition and localization through a second-order detection network, and replaces the original feature extraction module with Dense-Net, which can fuse multi-level feature information, increase network depth and avoid disappearance of network gradients. Meanwhile, the proposal merging strategy is improved with Soft-NMS, where an attenuation function is designed to replace the conventional NMS algorithm, thereby avoiding missed detection of adjacent or overlapping objects, and enhancing the network detection accuracy under multiple objects. During the experiment, the improved Faster R-CNN method in this article has 84.7% target detection result, which is improved compared to other methods, which proves that the target recognition method has significant advantages and potential.

골격 특징 및 색상 유사도를 이용한 가축 도난 감지 시스템 (Livestock Theft Detection System Using Skeleton Feature and Color Similarity)

  • 김준형;주영훈
    • 전기학회논문지
    • /
    • 제67권4호
    • /
    • pp.586-594
    • /
    • 2018
  • In this paper, we propose a livestock theft detection system through moving object classification and tracking method. To do this, first, we extract moving objects using GMM(Gaussian Mixture Model) and RGB background modeling method. Second, it utilizes a morphology technique to remove shadows and noise, and recognizes moving objects through labeling. Third, the recognized moving objects are classified into human and livestock using skeletal features and color similarity judgment. Fourth, for the classified moving objects, CAM (Continuously Adaptive Meanshift) Shift and Kalman Filter are used to perform tracking and overlapping judgment, and risk is judged to generate a notification. Finally, several experiments demonstrate the feasibility and applicability of the proposed method.

다중 얼굴 특징 추적을 이용한 복지형 인터페이스 (Welfare Interface using Multiple Facial Features Tracking)

  • 주진선;신윤희;김은이
    • 대한전자공학회논문지SP
    • /
    • 제45권1호
    • /
    • pp.75-83
    • /
    • 2008
  • 본 논문에서는 얼굴의 다중 특징을 이용하여 마우스의 다양한 동작을 효율적으로 구현할 수 있는 복지형 인터페이스를 제안한다. 제안된 시스템은 5개의 모듈로 구성 된다 : 얼굴의 검출(Face detection), 눈의 검출(eye detection), 입의 검출(mouth detection), 얼굴특징 추적(lariat feature tracking), 마우스의 제어(mouse control). 첫 단계에서는 피부색 모델과 연결 성분 분석을 이용하여 얼굴 영역을 검출한다. 그 후 얼굴영역으로부터 정확히 눈을 검출하기 위하여 신경망 기반의 텍스처 분류기를 사용하여 얼굴 영역에서 눈 영역과 비 눈 영역을 구분한다. 일단 눈 영역이 검출되면 눈의 위치에 기반 하여 에지 검출기(edge detector)를 이용하여 입 영역을 찾는다. 눈 영역과 입 영역을 찾으면 각각 mean shift 알고리즘과 template matching을 사용하여 정확하게 추적되고, 그 결과에 기반 하여 마우스의 움직임 또는 클릭의 기능이 수행된다. 제안된 시스템의 효율성을 검증하기 위하여 제안된 인터페이스 시스템을 다양한 응용분야에 적용 하였다. 장애인과 비장애인으로 나누어 제안된 시스템을 실험한 결과 모두에게 실시간으로 보다 편리하고 친숙한 인터페이스로 활용 될 수 있다는 것이 증명 되었다.

피로 검출을 위한 능동적 얼굴 추적 (Active Facial Tracking for Fatigue Detection)

  • 김태우;강용석
    • 한국정보전자통신기술학회논문지
    • /
    • 제2권3호
    • /
    • pp.53-60
    • /
    • 2009
  • 본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 운전자의 피로 상태를 검출하기 위한 얼굴 표정 인식을 위해 얼굴 특징을 추적하고자 하였다. 그러나 대다수의 얼굴 특징 추적 방법은 다양한 조명 조건과 얼굴 움직임, 회전등으로 얼굴의 특징점이 검출하지 못하는 경우가 발생한다. 본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 제안된 방법은 우선, 능동적 적외선 감지기를 사용하여 다양한 조명 조건하에서 동공을 검출하고, 검출된 동공은 얼굴 움직임을 예측하는데 사용되어진다. 얼굴 움직임에 따라 특징이 국부적으로 부드럽게 변화한다고 할 때, 칼만 필터로 얼굴 특징을 추적할 수 있다. 제한된 동공 위치와 칼만 필터를 동시에 사용함으로 각각의 특징 지점을 정확하게 예상할 수 있었고, Gabor 공간에서 예측 지점에 인접한 지점을 특징으로 추적할 수 있다. 패턴은 검출된 특징에서 공간적 연관성에서 추출한 특징들로 구성된다. 실험을 통하여 다양한 조명과 얼굴 방향, 표정 하에서 제안된 능동적 방법의 얼굴 추적의 실효성을 입증하였다.

  • PDF

피로 검출을 위한 능동적 얼굴 추적 (Active Facial Tracking for Fatigue Detection)

  • 박호식;정연숙;손동주;나상동;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.603-607
    • /
    • 2004
  • 본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 운전자의 피로 상태를 검출하기 위한 얼굴 표정 인식을 위해 얼굴 특징을 추적하고자 하였다. 그러나 대다수의 얼굴 특징 추적 방법은 다양한 조명 조건과 얼굴 움직임, 회전등으로 얼굴의 특징점이 검출하지 못하는 경우가 발생한다. 그러므로 본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 제안된 방법은 우선, 능동적 적외선 감지기를 사용하여 다양한 조명 조건 하에서 동공을 검출하고, 검출된 동공은 얼굴 움직임을 예측하는데 사용되어진다. 얼굴 움직임에 따라 특징이 국부적으로 부드럽게 변화한다고 할 때, 칼만 필터로 얼굴 특징을 추적할 수 있다. 제한된 동공 위치와 칼만 필터를 동시에 사용함으로 각각의 특징 지점을 정확하게 예상 할 수 있었고, Gabor 공간에서 예측 지점에 인접한 지점을 특징으로 추적할 수 있다. 패턴은 검출된 특징에서 공간적 연관성에서 추출한 특징들로 구성된다. 실험을 통하여 다양한 조명과 얼굴 방향, 표정 하에서 제안된 능동적 방법의 얼굴 추적의 실효성을 입증하였다.

  • PDF