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1. INTRODUCTION   

As an important technology of human-computer

interaction, human behavior detection has always

received extensive attention from computer vision.

However, in the real environment, there are some

complicated backgrounds, the human body is cov-

ered by objects, and the human body moves in var-

ious poses, which make the task of human behavior

detection more difficult.

The R-CNN (regions with CNN features)[1]

model is a classic algorithm applied to object de-

tection tasks. The algorithm idea of this model is

to first read in the image and then generate ap-

proximately 2,000 category-independent candidate

regions for the input image. Use a convolutional

neural network to obtain feature vectors of the

same length from each candidate area, and then use

a support vector machine (SVM)[2] to detect and

classify objects in each candidate area[3]. The

R-CNN model uses image affine deformation to

calculate the input of a convolutional neural net-

work with a fixed size for each candidate window,

regardless of the window shape.

Fast R-CNN[4] and Faster R-CNN[5] developed

on the basis of R-CNN are more effective in object

detection. The Fast R-CNN model is based on the

R-CNN model and combines the characteristics of

the SPP-Net[6] network to improve the speed of

training and testing, and at the same time improve
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the accuracy of model detection. The Fast R-CNN

model mainly solves the three problems of R-CNN

and SPP-Net: slow test speed, slow training speed

and large training space.

This paper introduces an improved Faster R-

CNN network for identification and localization of

human activity objects. Modification is made on

the Faster R-CNN framework based on the fea-

tures of Human activity object, the original feature

extraction module is replaced with densely con-

nected network (Dense-Net)[7], and the multi-

level features of fusion objects are extracted to add

expressive power to the features. Meanwhile, Soft-

NMS is used instead of the original proposal merg-

ing strategy, and an attenuation function is de-

signed to enhance the object box localization accu-

racy. Furthermore, used 2017MS COCO Test-dev

data sets to train and test the algorithm, and tested

in real scenes and got ideal results.

2. FASTER R-CNN ARCHITECTURES

As a current mainstream two-stage detection

network, Faster R-CNN is a combination of RPN

and Fast R-CNN, which enables output of detection

categories and box positioning at each stages[8,9].

Depending on network architecture, the Faster

R-CNN can be divided into three parts: the basic

feature extraction network, the RPN and the de-

tection network. The specific steps of the algorithm

are described below. Fig. 1 presents the algorithmic

framework.

3. IMPROVED FASTER R-CNN

3.1 Dense Block Network

Although a deeper network allows extraction of

deeper semantic information, there will be an in-

evitable increase in parameters with the deepening

of network[10,11]. As a result, a series of problems

are brought to the network optimization and the

experimental hardware. The data-sets built specif-

ically for the shellfish classification and detection

algorithm herein have small sample sizes, so that

the network training easily leads to over- fitting.

The use of Dense-Net as the feature extraction

network helps solve the above problems[12].

As a novel network architecture, Dense-Net

draws on the ideas of Res-Net. The most intuitive

difference between the two architectures lies in the

varying transfer functions for various network

blocks.

    (1)

       (2)

As is clear from (2) describing the transfer

function of the Res-Net, the -th layer output of

the network equals the nonlinear variation of  

Fig. 1. Faster R-CNN Architectures.
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-th layer output plus the -th layer output.

Contrastively, the -th layer output of a Dense-Net

block is the set of nonlinear transformations output

by all the previous layers. Fig. 2 depicts the Dense

Blocks of the Dense-Net.

3.2 Non-Maximum Suppression

In essence, non-maximum suppression (NMS)

aims to search for the local maximums and sup-

press the non-maximum elements, which is an im-

portant step of detection process[13,14]. Faster

R-CNN generates a series of detection boxes

    in an image, as well as the correspond-

ing box score set  . NMS algorithm selects the

detection box M in the object detection process pri-

or to the maximum score, which is then subjected

to intersection over union (IoU) computation with

the remaining detection boxes. The detection box

M will be suppressed if the result is greater than

the set threshold  . The NMS algorithm formula

is as follows:

      

    ≥
(3)

where the IoU is computed by the following for-

mula:

  ∩∪ (4)

where A and B represent two overlapping detection

boxes.

As is clear from (3), the NMS algorithm zeroes

with the detection box that is adjacent to M and

greater than the threshold. If an object under de-

tection appears in the overlapping region, the NMS

algorithm will fail to detect the object, thereby re-

ducing the accuracy of detection model.

To address this problem, the conventional NMS

algorithm is replaced with the Soft-NMS, where

an attenuation function is designed based on the

IoU between adjacent detection boxes instead of

setting their scores to zero, thereby ensuring accu-

rate identification of adjacent objects. The Soft-

NMS algorithm is expressed as:

      

        ≥
(5)

To accomplish the shellfish classification and

detection in real contexts, modifications are made

on the front-end feature extractor and the tail-end

regressor of the Faster R-CNN detection algorithm.

4. EXPERIMENTAL ANALYSIS

4.1 Data Sets Making and Processing

The Microsoft Common Objects in Context (MS

COCO) dataset contains 91 common object catego-

ries with 82 of them having more than 5,000 labeled

instances. In total the dataset has 2,500,000 labeled

Fig. 2. Dense Block Architectures.
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instances in 328,000 images. In contrast to the pop-

ular Image-Net dataset[15], COCO has fewer cate-

gories but more instances per category. This can

aid in learning detailed object models capable of

precise 2D localization. The dataset is also sig-

nificantly larger in number of instances per cat-

egory than the PASCAL VOC[16] and SUN[17]

data sets. Additionally, a critical distinction be-

tween our dataset and others is the number of la-

beled instances per image which may aid in learn-

ing contextual information. MS COCO contains

considerably more object instances per image (7.7)

as compared to Image-Net (3.0) and PASCAL

(2.3). In contrast, the SUN dataset, which contains

significant contextual information, has over 17 ob-

jects and “stuff” per image but considerably fewer

object instances overall.

4.2 Results Comparison and Analysis

In the test data, pictures of human behavior were

randomly selected for testing, and the test results

are shown in Fig. 3 to 4, respectively. Fig. 3 shows

the test results of the unimproved algorithm. The

human behaviors from left to right from top to bot-

tom are horse riding (0.895), using a computer

(0.824), playing musical instruments (0.781), calling

(0.894), reading (0.797), cycling (0.846), jumping

(0.897), taking pictures (0.734), among them, the

position accuracy of the detection is in the brackets.

Fig. 4 shows the test results of the improved

algorithm. The human behaviors from left to right

from top to bottom are horse riding (0.937), using

a computer (0.954), playing musical instruments

(0.892), calling (0.957), reading (0.922), cycling (0.936),

jumping (0.979), taking pictures (0.894), among

them, the position accuracy of the detection is in

the brackets. Comparing the randomly selected test

data, the last three actions in Fig. 3 are reading,

Fig. 3. The Original Algorithm Detection Results.

Fig. 4. The Improved Algorithm Detection Results.
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taking photos, and riding a bicycle. When using

VGGNet, the algorithm did not detect the actions

in the figure. In Fig. 4 for the same picture and

the same behavior, the improved algorithm accu-

rately recognizes the three actions, and the actions

in the picture are more accurate than the original

algorithm. Compared with the two algorithms, the

improved algorithm can not only accurately identi-

fy all human behaviors in the sampled test images,

but also has improved accuracy.

The improved Faster R-CNN algorithm has a

better recognition effect on the three actions of

playing computer, horse riding and cycling, al-

though the recognition effect of reading and play-

ing musical instruments is slightly worse than

other actions. However, compared with the original

algorithm, the accuracy of identifying categories

and locations has been significantly improved.

Moreover, the recognition effect of the improved

Faster R-CNN algorithm has been significantly

improved, and the average classification effect and

position accuracy have reached 84.7%, which

proves the effectiveness of the improved algorithm

for human behavior detection tasks.

In this paper, also have some sampling tests

were performed in real scenarios, and the test re-

sults are shown in Fig. 5. The human behaviors

from left to right in the figure are standing (1.000),

walking (0.956), running (0.774), and touching

(1.000). The position accuracy of detection is in

parentheses.

According to Fig. 6, it can be seen that the im-

proved Faster R-CNN quickly stabilizes after the

1500 iteration process, which further improves the

efficiency of target detection. And maintain a

steady trend in accuracy.

This article adds a comparative experiment of

R-CNN, Fast R-CNN and Faster R-CNN. The

comparative analysis shows that Improved Faster

R-CNN first has a very large improvement in rec-

ognition speed, and the average detection time for

each picture is 0.14s, to achieve a faster detection

effect; and the CNN training network selects a

deeper VGG16 network model, and the recognition

accuracy reaches 84.7%. Table 1 and Fig. 7 show

the test performance comparison of R-CNN, Fast

R-CNN, Faster R-CNN and Improved Faster R-

CNN methods.

Table 1. The Test Performance Comparison.

Algorithm
Accuracy
[%]

Duration
[s]

R-CNN[1] 77.10 13.40

Fast R-CNN[4] 77.50 4.60

Faster R-CNN[5] 81.67 0.76

Improved Faster R-CNN 84.70 0.14

Fig. 5. Training Process of Loss and Testing Process of Validation Accuracy.

Fig. 6. Validation Accuracy in the Processing of Iter-

ations.
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5. CONCLUSION

As a modification based on Faster R-CNN, the

algorithm uses Dense-Net as the feature extraction

network, where the dense connection between

blocks allows effective utilization of the shallow

and deep layer features, thereby enhancing the

shellfish detection accuracy. Meanwhile, the pro-

posal merging strategy is optimized by using

Soft-NMS instead of the original algorithm, there-

by adding precision to the proposals. Furthermore,

shellfish data sets are built in real contexts, and

then augmented to improve the robustness of the

training model. The proposed detection algorithm

can achieve multi-object shellfish detection in daily

life, and has preferable accuracies in complicated

scenarios like illumination influence, partial occlu-

sion and complex background, which exhibits a

good detection performance.
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