• 제목/요약/키워드: Multiple coating

검색결과 109건 처리시간 0.025초

굽힘모드하에서의 코팅크랙킹의 분석 I : 이론 (A Study on the Coating Cracking on a Substrate in Bending I : Theory)

  • Sung-Ryong Kim;John A. Nairn
    • Composites Research
    • /
    • 제13권3호
    • /
    • pp.38-47
    • /
    • 2000
  • 기재위에 입혀진 코팅에서 발생하는 크랙킹 현상을 파괴역학을 이용해서 분석하였다. 코팅/기재 구조에서 굽힘모드시 발생하는 코팅크랙킹을 변분법을 이용하여 분석하였으며, 본 연구에서 유도된 변위에너지 방출량을 통해 기재위에 입혀진 코팅층에서 크랙이 확장되는 것을 예측할 수 있다. 본 연구를 통해 얻어진 코팅의 임계 변위에너지 방출량은 재료의 고유성질이며 코팅크랙킹의 보다 근본적인 의미를 제공할 수 있다.

  • PDF

A STRESS ANALYSIS FOR A COATED FUEL PARTICLE OF A HTGR USING A FINITE ELEMENT METHOD

  • Kim, Young-Min;Cho, Moon-Sung
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1087-1100
    • /
    • 2009
  • A finite element method utilizing the Galerkin form of the weighted residuals procedure was developed to estimate the mechanical behavior for a coated fuel particle (CFP) of a high temperature gas-cooled reactor (HTGR). Through a weak formulation, finite element equations for multiple layers were set up to calculate the displacements and stresses in a CFP. The finite element method was applied to the stress analyses for three coating layers of a tri-isotropic coated fuel particle (TRISO) of a HTGR. The stresses calculated by the finite element method were in good agreement with those from a previously developed computer code and depicted the typical stress behavior of the coating layers very well. The newly developed finite element method performs a stress analysis for multiple bonded layers in a CFP by changing the material properties at any position in the layers during irradiation.

산화그래핀(GO)의 플라스틱(PS) 표면 코팅방법에 대한 연구 (Investigation on the polystyrene surface coating method of graphene oxide)

  • 박재범;이지훈;허증수;박단비;임정옥
    • 한국표면공학회지
    • /
    • 제54권2호
    • /
    • pp.77-83
    • /
    • 2021
  • In this study, we investigated various coating methods of graphene oxide on the surface of a petri dish made of polystyrene and analyzed the physical and chemical properties of the coated surface. For coating, spinning, spraying and pressing methods were attempted. The coated surface was characterized by SEM, Raman Spectroscopy, AFM, FT-IR, UV-Vis Spectroscopy and Contact Angle measurement. By spin coating and spray coating, well distributed graphene oxide in the form of multiple islands on the plastic surface with an average size of 5 to 20㎛ are observed by SEM, and high binding energy between graphene oxide and plastic surface is measured by AFM. In case of hand press coating, graphene oxide of 10㎛ or more was observed, and low surface energy was measured. By FT-IR and Raman Spectroscopy analysis, surface coating of graphene oxide was confirmed.

Stochastic Estimation of Acoustic Impedance of Glass-Reinforced Epoxy Coating

  • Kim, Nohyu;Nah, Hwan-Seon
    • 비파괴검사학회지
    • /
    • 제34권2호
    • /
    • pp.119-127
    • /
    • 2014
  • An epoxy coating applied to the concrete surface of a containment building deteriorates in hazardous environments such as those containing radiation, heat, and moisture. Unlike metals, the epoxy coating on a concrete liner absorbs and discharges moisture during the degradations process, so it has a different density and volume during service. In this study, acoustic impedance was adopted for characterizing the degradation of a glass-reinforced epoxy coating using the acoustic reflection coefficient (reflectance) on a rough epoxy coating. For estimating the acoustic reflectance on a wavy epoxy coating surface, a probabilistic model was developed to represent the multiple irregular reflections of the acoustic wave from the wavy surface on the basis of the simulated annealing technique. A number of epoxy-coated concrete specimens were prepared and exposed to accelerated aging conditions to induce an artificial aging degradation in them. The acoustic impedance of the degraded epoxy coating was estimated successfully by minimizing the error between a waveform calculated from the mathematical model and a waveform measured from the surface of the rough coating.

DLC (ta-C) 후막코팅을 위한 트라이볼로지 코팅 연구 (Tribology Coating Study of Thick DLC (ta-C) Film)

  • 장영준;강용진;김기택;김종국
    • Tribology and Lubricants
    • /
    • 제32권4호
    • /
    • pp.125-131
    • /
    • 2016
  • In recent years, thick ta-C coating has attracted considerable interest owing to its existing and potential commercial importance in applications such as automobile accessories, drills, and gears. The thickness of the ta-C coating is an important parameter in these applications. However, the biggest problems are achieving efficient coating and uniformity over a large area with high-speed deposition. Feasibility is confirmed for the ta-C coating thickness of up to 9.0 µm (coating speed: 3.0 µm/h, fixed substrate) using a single FCVA cathode. The thickness was determined using multiple coating cycles that were controlled using substrate temperature and residual stresses. In the present research, we have designed a coating system using FCVA plasma and produced enhanced thick ta-C coating. The system uses a specialized magnetic field configuration with stabilized DC arc plasma discharge during deposition. To achieve quality that is acceptable for use in automobile accessories, the magnetic field, T-type filters, and 10 pieces of a multi-cathode are used to demonstrate the deposition of the thick ta-C coating. The results of coating performance indicate that uniformity is ±7.6 , deposited area is 400 mm, and the thickness of the ta-C coating is up to 5.0 µm (coating speed: 0.3 µm/h, revolution and rotation). The hardness of the coating ranges from 30 to 59 GPa, and the adhesion strength level (HF1) ranges from 20 to 60 N, depending on the ta-C coating.

균열 길이와 코팅방법에 따른 Si3N4의 균열 치유 특성 (Characterization of Crack Healing of Si3N4 Ceramic Structures According to Crack Length and Coating Methods)

  • 남기우;문창권;박상현;은경기;김종순
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1715-1720
    • /
    • 2010
  • 본 연구에서는 장균열을 가지는 Si3N4 세라믹스의 균열 길이와 코팅 방법에 따르는 균열 치유 특성을 규명하였다. 약 $100{\sim}500\;{\mu}m$의 균열 길이는 24.5 ~ 98 N의 하중을 사용하여 비커스 압자를 이용하여 만들었다. 24.5 N의 하중으로 만든 단균열의 경우, $SiO_2$ 나노 콜로이드 코팅된 균열재는 모재보다 약 140 % 증가한 가장 높은 굽힘 강도를 보였지만, 장균열은 모재보다 낮은 굽힘 강도를 나타내었다. 그러나 대부분의 장균열 시험편의 굽힘 강도는 균열재보다 약간 증가하였다. 이러한 결과에 따라서, 복수 압입에 의한 $Si_3N_4$ 세라믹스의 균열 치유 특성을 코팅방법에 따라 연구하였다. 장균열 시험편의 가장 효과적인 코팅 방법은 정수압코팅방법이었다.

Multiple unequal cracks between an FGM orthotropic layer and an orthotropic substrate under mixed mode concentrated loads

  • M. Hassani;M.M. Monfared;A. Salarvand
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.535-546
    • /
    • 2023
  • In the present paper, multiple interface cracks between a functionally graded orthotropic coating and an orthotropic half-plane substrate under concentrated loading are considered by means of the distribution dislocation technique (DDT). With the use of integration of Fourier transform the problem is reduced to a system of Cauchy-type singular integral equations which are solved numerically to compute the dislocation density on the surfaces of the cracks. The distribution dislocation is a powerful method to calculate accurate solutions to plane crack problems, especially this method is very good to find SIFs for multiple unequal cracks located at the interface. Hence this technique allows considering any number of interface cracks. The primary objective of this paper is to investigate the effects of the interaction of multiple interface cracks, load location, material orthotropy, nonhomogeneity parameters and geometry parameters on the modes I and II SIFs. Numerical results show that modes I/II SIFs decrease with increasing the nonhomogeneity parameter and the highest magnitude of SIF occurs where distances between the load location and crack tips are minimal.

굽힘모드하에서의 코팅크랙킹의 분석II: 실험 (A Study on the Coating Cracking on a Substrate in Bending II : Experiment)

  • Sung-Ryong Kim;John A. Nairn
    • Composites Research
    • /
    • 제13권3호
    • /
    • pp.48-57
    • /
    • 2000
  • 앞 동반논문의 이론에서 기술된 기재위에 입혀진 코팅크랙킹의 파괴역학 분석을 4점 굴곡시험을 이용하여 실증하였다. 파괴역학 접근에 의해서 코팅의 다중크랙킹을 예측하여 코팅층에서 새로운 크랙이 생길 때의 변위에너지 방출량(G)을 구하였다. 여러 건조시간과 건조온도의 변화에 따른 금속 및 고분자 기재위에 입혀진 코팅의 변위에 대한 코팅 크랙밀도의 실험데이타가 in-situ 코팅의 파괴인성 값을 구하기 위해 사용되었다. 건조온도가 올라가고 건조시간이 길어짐에 따라 $G_c$는 감소하였다. 본 논문은 코팅의 파괴인성 평가에 있어 4점 굴곡시험이 얼마나 유용한지를 보여주며 in-situ 코팅인성을 구하는 방법을 제시하였다.

  • PDF

Characterization of Ceramic Oxide Layer Produced on Commercial Al Alloy by Plasma Electrolytic Oxidation in Various KOH Concentrations

  • Lee, Jung-Hyung;Kim, Seong-Jong
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.119-124
    • /
    • 2016
  • Plasma electrolytic oxidation (PEO) is a promising coating process to produce ceramic oxide on valve metals such as Al, Mg and Ti. The PEO coating is carried out with a dilute alkaline electrolyte solution using a similar technique to conventional anodizing. The coating process involves multiple process parameters which can influence the surface properties of the resultant coating, including power mode, electrolyte solution, substrate, and process time. In this study, ceramic oxide coatings were prepared on commercial Al alloy in electrolytes with different KOH concentrations (0.5 ~ 4 g/L) by plasma electrolytic oxidation. Microstructural and electrochemical characterization were conducted to investigate the effects of electrolyte concentration on the microstructure and electrochemical characteristics of PEO coating. It was revealed that KOH concentration exert a great influence not only on voltage-time responses during PEO process but also on surface morphology of the coating. In the voltage-time response, the dielectric breakdown voltage tended to decrease with increasing KOH concentration, possibly due to difference in solution conductivity. The surface morphology was pancake-like with lower KOH concentration, while a mixed form of reticulate and pancake structures was observed for higher KOH concentration. The KOH concentration was found to have little effect on the electrochemical characteristics of coating, although PEO treatment improved the corrosion resistance of the substrate material significantly.

간접 코팅과 롤 접합을 이용한 의료용 스플린트 제작 및 공정기술 개발 (Development of the Splint Manufacturing Process Using Indirect Coating and Roll Bonding)

  • 하경호;강대민;이정희;곽재섭
    • 한국기계가공학회지
    • /
    • 제18권2호
    • /
    • pp.1-6
    • /
    • 2019
  • With the increase in number of the athletic population and elderly demographic, the demand for orthopedic splints, which are used to support a damaged body, has rapidly increased. Current splints mainly consist of inner and outer parts, which are multiple fabrics covered with polyurethane and nonwoven fabrics, respectively. However, the laminated materials with directly applied pre-polymer coating lead to a high defect rate because of the uneven thickness on the surface. Thus, this study proposes an indirect coating method using a precise clearance controller, which enables the even application of the coating material on multiple inner parts while maintaining a constant thickness. In addition, a roll-to-roll (R2R) technique is applied instead of the sewing mechanism to bond the inner and outer materials together and enhance the productivity in the final stage. In the advanced methods, there is a storage tank that contains polyurethane, a clearance controller, and pairs of rollers in the upper and lower rows. To improve the quality of the products and optimize the equipment, three controllable factors are determined: the viscosity of polyurethane, angle of the gap controller and number of pairs of rollers in the R2R system.