• Title/Summary/Keyword: Multiple beam

Search Result 618, Processing Time 0.028 seconds

Dosimetric Characteristics of Multileaf Collimator-based Intensity-modulated Arc Therapy for Stereotactic Radiosurgery (방사선수술 시 다엽 콜리메이터를 기초로 한 IMAT의 선량분포)

  • Yun, Sang-Mo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.93-97
    • /
    • 2007
  • This study was designed to evaluate radiosurgery technique using multiple noncoplanar arc therapy with intensity modulated fine MLC shaped photon beam. The stereotactic radiosurgery was performed with 6-MV X-ray beams from a Clinac 21EX LINAC (Varian, Palo Alto, CA, USA) with a MLC-120, which features a full $40{\times}40cm$ field and is the first MLC for general use that offers 0.5 cm resolution for high precision treatment of small and irregular fields. We used a single isocenter and five gantry-couch combinations with a set of intensity modulated arc therapy. We investigated dosimetric characteristics of 2 cm sized spherical target volume with film (X-OMAT V2 film, Kodak Inc, Rochester NY, USA) dosimetry within $25{\times}25cm$ acrylic phantom. A simulated single isocentric treatment using inversely Planned 3D radiotherapy planning system demonstrated the ability to conform the dose distribution to an spherical target volume. The 80% dose level was adequate to encompass the target volume in frontal, sagittal, and transverse planes, and the region between the 40% and 80% isodose lines was $4.0{\sim}4.5mm$ and comparable to the dose distribution of the Boston Arcs. We expect that our radiosurgery technique could be a treatment option for irregular-shaped large intracranial target.

  • PDF

Multiple Camera Based Imaging System with Wide-view and High Resolution and Real-time Image Registration Algorithm (다중 카메라 기반 대영역 고해상도 영상획득 시스템과 실시간 영상 정합 알고리즘)

  • Lee, Seung-Hyun;Kim, Min-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.10-16
    • /
    • 2012
  • For high speed visual inspection in semiconductor industries, it is essential to acquire two-dimensional images on regions of interests with a large field of view (FOV) and a high resolution simultaneously. In this paper, an imaging system is newly proposed to achieve high quality image in terms of precision and FOV, which is composed of single lens, a beam splitter, two camera sensors, and stereo image grabbing board. For simultaneously acquired object images from two camera sensors, Zhang's camera calibration method is applied to calibrate each camera first of all. Secondly, to find a mathematical mapping function between two images acquired from different view cameras, the matching matrix from multiview camera geometry is calculated based on their image homography. Through the image homography, two images are finally registered to secure a large inspection FOV. Here the inspection system of using multiple images from multiple cameras need very fast processing unit for real-time image matching. For this purpose, parallel processing hardware and software are utilized, such as Compute Unified Device Architecture (CUDA). As a result, we can obtain a matched image from two separated images in real-time. Finally, the acquired homography is evaluated in term of accuracy through a series of experiments, and the obtained results shows the effectiveness of the proposed system and method.

Simultaneous and Multi-frequency Driving System of Ultrasonic Sensor Array for Object Recognition

  • Park, S.C.;Choi, B.J.;Lee, Y.J.;Lee, S.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.582-587
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments, because they are cheap, easy to use, and robust under varying lighting conditions. However, the recognition of objects using a ultrasonic sensor is not so easy due to its characteristics such as narrow beam width and no reflected signal from a inclined object. As one of the alternatives to resolve these problems, use of multiple sensors has been studied. A sequential driving system needs a long measurement time and does not take advantage of multiple sensors. Simultaneous and pulse coding driving system of ultrasonic sensor array cannot measure short distance as the length of the code becomes long. This problem can be resolved by multi-frequency driving of ultrasonic sensors, which allows multi-sensors to be fired simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a simultaneous and multi-frequency driving system for an ultrasonic sensor array for object recognition. The proposed system is designed and implemented using a DSP and FPGA. A micro-controller board is made using a DSP, Polaroid 6500 ranging modules are modified for firing the multi-frequency signals, and a 5-channel frequency modulated signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances for each sensor were obtained from filtering of the received overlapping signals and calculation of the time-of-flights.

  • PDF

Simulation of Multi-Cracking in a Reinforced Concrete Beam by Extended Finite Element Method (확장유한요소법을 이용한 철근 콘크리트 보의 다중균열 해석)

  • Yoo, Hyun-Suk;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2016
  • Recently, extensive research on crack analysis using extended finite element method(XFEM) which has main advantages in element re-meshing and visualization of cracks has been conducted. However, its application was restricted to the members of a single material. In this study, the applicability and feasibility of the XFEM to the multiple crack analysis of reinforced concrete beams were demonstrated. ABAQUS which has implemented XFEM was used for the crack analysis and its results were compared with test results. Enriched degree-of-freedom locking phenomenon was discovered and its causes and the ways to prevent it were suggested. The locking occurs when cracks in the adjacent elements simultaneously develop. A modelling technique for multiple cracking similar to test results was also proposed. The analysis with XFEM showed similar results to the tests in terms of crack patterns, spacing of cracks, and load-deflection relationship.

Analysis on performance of grid-free compressive beamforming based on experiment (실험 기반 무격자 압축 빔형성 성능 분석)

  • Shin, Myoungin;Cho, Youngbin;Choo, Youngmin;Lee, Keunhwa;Hong, Jungpyo;Kim, Seongil;Hong, Wooyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.179-190
    • /
    • 2020
  • In this paper, we estimated the Direction of Arrival (DOA) using Conventional BeamForming (CBF), adaptive beamforming and compressive beamforming. Minimum Variance Distortionless Response (MVDR) and Multiple Signal Classification (MUSIC) are used as the adaptive beamforming, and grid-free compressive sensing is applied for the compressive sensing beamforming. Theoretical background and limitations of each technique are introduced, and the performance of each technique is compared through simulation and real experiments. The real experiments are conducted in the presence of reflected signal, transmitting a sound using two speakers and receiving acoustic data through a linear array consisting of eight microphones. Simulation and experimental results show that the adaptive beamforming and the grid-free compressive beamforming have a higher resolution than conventional beamforming when there are uncorrelated signals. On the other hand, the performance of the adaptive beamforming is degraded by the reflected signals whereas the grid-free compressive beamforming still improves the conventional beamforming resolution regardless of reflected signal presence.

Adaptive Beam Selection Method for Improvement of Spectral Efficiency in Millimeter-Wave MIMO (밀리미터파 대역의 다중입출력 안테나 시스템에서 스펙트럼 효율 향상을 위한 적응적 빔 선택 기법)

  • Kim, Jun-Ho;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.890-895
    • /
    • 2016
  • As the wireless communication technique is developing rapidly, the use of smart devices is increasing. Due to gradually increasing data traffic, a new area, more than 6GHz of bandwidth to increase capacity of the network, has been studied. Millimeter Wave(MmWave) communications utilizes the bandwidth above 6GHz, which makes it possible to achieve one gigabit per second data rate. To overcome the path loss due to the smaller wavelength, the mass of the antenna arrangement is used. This paper presents an algorithm that maximizes the spectral efficiency of the system in the pre-coding process using a hybrid beamforming. Also it is suggested with the optimization of the number of beams that maximizes the spectral efficiency was maximized by the propose method.

Optimal Control Method of Directional Antenna Beam (지향성 안테나 빔의 최적 제어 방식)

  • Hyun, Kyo-Hwan;Joeng, Seong-Boo;Kim, Joo-Woong;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.717-720
    • /
    • 2007
  • This paper presents a novel scheme that quickly searches for the optimal direction of multiple directional antennas, and locks on to it for high-speed millimeter wavelength transmissions, when communications to another antenna directional are disconnected. The proposed method utilizes a modified genetic algorithm, which selects a superior initial group through preprocessing in order to solve the local solution in genetic algorithm. TDD (Time Division Duplex) is utilized as the transfer method and data controller for the antenna. Once the initial communication is completed for the specific number of individuals, no longer antenna's data will be transmitted nil each station processes GA in order to produce the next generation. After reproduction, individuals of the next generation become the data, and communication between each station is made again. In order to verify the effectiveness of the proposed system, simulation results of 1:1, 1:2, 1:5 directional antennas and experiment results of 1:1 directionalantennas confirmed the efficiency of the proposed method. The 16bit split is 8bit, but it has similar performance as 16bit gene.

  • PDF

Vertical Sectorization Techniques in MISO Downlink Active Antenna Systems (MISO 하향 능동 안테나 시스템에서의 수직 섹터분할 기법)

  • Ahn, Minki;Eom, Subin;Lee, Inkyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.997-1004
    • /
    • 2015
  • In this paper, we study vertical sectorization techniques in multiple-input single-output (MISO) downlink active antenna systems (AAS). In the AAS, antenna beam patterns can be adjusted in each sector and multiple vertical beams can form the vertical sectorization. Since an exhaustive search based vertical sectorization algorithm requires high computational complexity to find the optimal tilt angles, we propose two vertical sectorization algorithms to reduce the complexity. First, we provide an asymptotic sum rate based algorithm which utilizes a large system approximation of the average sum rate based on the random matrix theory. Next, by using the result in the single sector transmission, the single sector based algorithm is proposed. In the simulation results, we confirm that the proposed algorithms are close to the performance of the exhaustive search algorithm with much reduced complexity.

Development of Damage Estimation Method using Sensor of Multiple Function in RC Beam (철근 콘크리트 보에서의 다기능 센서를 이용한 손상 추정법 개발)

  • Kim, Ie-Sung;Park, Kang-Geon;Kim, Wha-Jung
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.184-188
    • /
    • 2008
  • Performance degradation of concrete structures is generally caused by structural deteriorations, such as cracks. It may result in serious defects of concrete structures. Methods of damage detection are used a visual angle of human or non-destructive test, and they are using various sensors. Problems of crack damage detection are occurred to directions of cracks by using 1 axial type of accelerometer in concrete element. In addition, these sensors are not used to occurring fire in RC building. Thermocouple sensors are able to using measurement of temperature in fire, and then deformations of main element and structures are not used. In this study, fundamental studies for development of multiple function sensor using 3 axial type of accelerometer and electric resistance property of thermocouple sensors are discussed estimation to stability of structures when happened form active load or fire, and so on.

  • PDF

Multiple Targets Detection by using CLEAN Algorithm in Matched Field Processing (정합장처리에서 CLEAN알고리즘을 이용한 다중 표적 탐지)

  • Lim Tae-Gyun;Lee Sang-Hak;Cha Young-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1545-1550
    • /
    • 2006
  • In this paper, we propose a method for applying the CLEAN algorithm to an minimum variance distortionless response(MVDR) to estimate the location of multiple targets distributed in the ocean. The CLEAN algorithm is easy to implement in a linear processor, yet not in a nonlinear processor. In the proposed method, the CSDM of a Dirty map is separated into the CSDM of a Clean beam and the CSDM of the Residual, then an individual ambiguity surface(AMS) is generated. As such, the CLEAN algorithm can be applied to an MVDR, a nonlinear processor. To solve the ill-conditioned problem related to the matrix inversiion by an MVDR when using the CLEAN algorithm, Singular value decomposition(SVD) is carried out, then the reciprocal of small eigenvalues is replaced with zero. Experimental results show that the proposed method improves the performance of an MVDR.