• Title/Summary/Keyword: Multiple beam

Search Result 609, Processing Time 0.028 seconds

Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks (다중 크랙이 있는 복합재료 보의 자유진동 특성)

  • 하태완;송오섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.5-14
    • /
    • 1999
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.537-573
    • /
    • 2015
  • Multiple-step beams carrying intermediate lumped masses with/without rotary inertias are widely used in engineering applications, but in the literature for free vibration analysis of such structural systems; Bernoulli-Euler Beam Theory (BEBT) without axial force effect is used. The literature regarding the free vibration analysis of Bernoulli-Euler single-span beams carrying a number of spring-mass systems, Bernoulli-Euler multiple-step and multi-span beams carrying multiple spring-mass systems and multiple point masses are plenty, but that of Timoshenko multiple-step beams carrying intermediate lumped masses and/or rotary inertias with axial force effect is fewer. The purpose of this paper is to utilize Numerical Assembly Technique (NAT) and Differential Transform Method (DTM) to determine the exact natural frequencies and mode shapes of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and/or rotary inertias. The model allows analyzing the influence of the shear and axial force effects, intermediate lumped masses and rotary inertias on the free vibration analysis of the multiple-step beams by using Timoshenko Beam Theory (TBT). At first, the coefficient matrices for the intermediate lumped mass with rotary inertia, the step change in cross-section, left-end support and right-end support of the multiple-step Timoshenko beam are derived from the analytical solution. After the derivation of the coefficient matrices, NAT is used to establish the overall coefficient matrix for the whole vibrating system. Finally, equating the overall coefficient matrix to zero one determines the natural frequencies of the vibrating system and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equations of the motion. The calculated natural frequencies of Timoshenko multiple-step beam carrying intermediate lumped masses and/or rotary inertias for the different values of axial force are given in tables. The first five mode shapes are presented in graphs. The effects of axial force, intermediate lumped masses and rotary inertias on the free vibration analysis of Timoshenko multiple-step beam are investigated.

Application of a Modular Multi-Gaussian Beam Model to Ultrasonic Wave Propagation with Multiple Interfaces

  • Jeong, Hyun-Jo;Park, Moon-Cheol;Schmerr Lester W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.163-170
    • /
    • 2005
  • A modular Gaussian beam model is developed to simulate some ultrasonic testing configurations where multiple interfaces are involved. A general formulation is given in a modular matrix form to represent the Gaussian beam propagation with multiple interfaces. The ultrasonic transducer fields are modeled by a multi-Gaussian beam model which is formed by superposing 10 single Gaussian beams. The proposed model, referred to as "MMGB" (modular multi-Gaussian beam) model, is then applied to a typical contact and angle beam testing configuration to predict the output signal reflected from the corner of a vertical crack. The resulting expressions given in a modular matrix form are implemented in a personal computer using the MATLAB program. Simulation results are presented and compared with available experimental results.

On the natural frequencies and mode shapes of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Lin, Hsien-Yuan;Tsai, Ying-Chien
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.701-717
    • /
    • 2006
  • In the existing reports regarding free transverse vibrations of the Euler-Bernoulli beams, most of them studied a uniform beam carrying various concentrated elements (such as point masses, rotary inertias, linear springs, rotational springs, spring-mass systems, ${\ldots}$, etc.) or a stepped beam with one to three step changes in cross-sections but without any attachments. The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of the multiple-step Euler-Bernoulli beams carrying a number of lumped masses and rotary inertias. First, the coefficient matrices for an intermediate lumped mass (and rotary inertia), left-end support and right-end support of a multiple-step beam are derived. Next, the overall coefficient matrix for the whole vibrating system is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact natural frequencies and the associated mode shapes of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting the corresponding values of integration constants into the associated eigenfunctions, respectively. The effects of distribution of lumped masses and rotary inertias on the dynamic characteristics of the multiple-step beam are also studied.

Development of Multiple Beam Optical Tweezers

  • Lee Dong-Jin;LeBrun Thomas W.;Balijepalli Arvind;Gorman JasonJ.;Gagnon Cedric;Hong Dae-Hie;Chang Esthe rH.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1501-1506
    • /
    • 2005
  • This paper presents the design of a multiple beam optical tweezers instrument used for manipulating micro/nano-sized components. The basic equations used in designing the optical tweezers are derived and the stable and time-sharing multiple beam optical tweezers are constructed with scanning mirrors. The laser beam passes through a series of optical components such as lenses, mirrors, and scanning mirrors, and overfills the entrance aperture of microscope objective, which gives a stable trap. By rotating the laser beam with the scanning mirror, the focal positions are translated in the specimen plane and multiple micro/nano-sized objects can be moved. The constructed optical tweezers is used to manipulate cells and liposomes simultaneously and to trap multiple nano-wires. The experiments prove that the developed optical tweezers can be a very versatile manipulation tool for studying gene therapy and nano device fabrication.

  • PDF

Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems with the effects of shear deformation and rotary inertia

  • Wang, Jee-Ray;Liu, Tsung-Lung;Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • Because of complexity, the literature regarding the free vibration analysis of a Timoshenko beam carrying "multiple" spring-mass systems is rare, particular that regarding the "exact" solutions. As to the "exact" solutions by further considering the joint terms of shear deformation and rotary inertia in the differential equation of motion of a Timoshenko beam carrying multiple concentrated attachments, the information concerned is not found yet. This is the reason why this paper aims at studying the natural frequencies and mode shapes of a uniform Timoshenko beam carrying multiple intermediate spring-mass systems using an exact as well as a numerical assembly method. Since the shear deformation and rotary inertia terms are dependent on the slenderness ratio of the beam, the shear coefficient of the cross-section, the total number of attachments and the support conditions of the beam, the individual and/or combined effects of these factors on the result are investigated in details. Numerical results reveal that the effect of the shear deformation and rotary inertia joint terms on the lowest five natural frequencies of the combined vibrating system is somehow complicated.

Efficient Beam-Training Technique for Millimeter-Wave Cellular Communications

  • Ku, Bon Woo;Han, Dae Gen;Cho, Yong Soo
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.81-89
    • /
    • 2016
  • In this paper, a beam ID preamble (BIDP) technique, where a beam ID is transmitted in the physical layer, is proposed for efficient beam training in millimeter-wave cellular communication systems. To facilitate beam ID detection in a multicell environment with multiple beams, a BIDP is designed such that a beam ID is mapped onto a Zadoff-Chu sequence in association with its cell ID. By analyzing the correlation property of the BIDP, it is shown that multiple beams can be transmitted simultaneously with the proposed technique with minimal interbeam interference in a multicell environment, where beams have different time delays due to propagation delay or multipath channel delay. Through simulation with a spatial channel model, it is shown that the best beam pairs can be found with a significantly reduced processing time of beam training in the proposed technique.

Piezoelectric Beam Rotating Actuator for Multiple Beam Disk Drives (압전소자률 이용한 다중빔 광디스크용 빔 회전 구동기)

  • 김병준;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.154-159
    • /
    • 2000
  • A multi-beam optical disk drive is presented as a method for improving the effective data transfer rate by increasing the beam spot number formed on an optical disk. The beam rotating actuator is necessary for putting multi-beam on more than one track. The beam rotating actuator is made up of piezoelectric material, high stiffness wire hinge and dove prism. The actuator has good frequency response above 1KHz and suitable operational range. The dynamic equation for the actuator is derived.

  • PDF

Nonlinear vibrations of axially moving beams with multiple concentrated masses Part I: primary resonance

  • Sarigul, M.;Boyaci, H.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.2
    • /
    • pp.149-163
    • /
    • 2010
  • Transverse vibrations of axially moving beams with multiple concentrated masses have been investigated. It is assumed that the beam is of Euler-Bernoulli type, and both ends of it have simply supports. Concentrated masses are equally distributed on the beam. This system is formulated mathematically and then sought to find out approximately solutions of the problem. Method of multiple scales has been used. It is assumed that axial velocity of the beam is harmonically varying around a mean-constant velocity. In case of primary resonance, an analytical solution is derived. Then, the effects of both magnitude and number of the concentrated masses on nonlinear vibrations are investigated numerically in detail.

Dynamic response of a beam on multiple supports with a moving mass

  • Lee, H.P.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.303-312
    • /
    • 1996
  • The dynamic behavior of an Euler beam with multiple point constraints traversed by a moving concentrated mass, a "moving-force moving-mass" problem, is analyzed and compared with the corresponding simplified "moving-force" problem. The equation of motion in matrix form is formulated using Lagrangian approach and the assumed mode method. The effects of the presence of intermediate point constraints in reducing the fluctuation of the contact force between the mass and the beam and the possible separation of the mass from the beam are investigated. The equation of motion and the numerical results are expressed in dimensionless form. The numerical results presented are therefore applicable for a large combination of system parameters.