• Title/Summary/Keyword: Multiple Time Scale Method

Search Result 155, Processing Time 0.024 seconds

A GENERAL MULTIPLE-TIME-SCALE METHOD FOR SOLVING AN n-TH ORDER WEAKLY NONLINEAR DIFFERENTIAL EQUATION WITH DAMPING

  • Azad, M. Abul Kalam;Alam, M. Shamsul;Rahman, M. Saifur;Sarker, Bimolendu Shekhar
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.695-708
    • /
    • 2011
  • Based on the multiple-time-scale (MTS) method, a general formula has been presented for solving an n-th, n = 2, 3, ${\ldots}$, order ordinary differential equation with strong linear damping forces. Like the solution of the unified Krylov-Bogoliubov-Mitropolskii (KBM) method or the general Struble's method, the new solution covers the un-damped, under-damped and over-damped cases. The solutions are identical to those obtained by the unified KBM method and the general Struble's method. The technique is a new form of the classical MTS method. The formulation as well as the determination of the solution from the derived formula is very simple. The method is illustrated by several examples. The general MTS solution reduces to its classical form when the real parts of eigen-values of the unperturbed equation vanish.

Dynamic Analysis of Cantilever Plates Undergoing Translationally Oscillating Motion (면내 방향 맥동 운동하는 외팔평판의 동적 안정성 해석)

  • Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.366-371
    • /
    • 2001
  • Dynamic stability of an oscillating cantilever plate is investigated in this paper. The equations of motion include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Using the multiple scale perturbation method is employed to obtain a stability diagram. The tability diagram shows that relatively large unstable regions exist when the frequency of oscillation is near twice the frequencies of the 1st torsion natural mode and the 1st chordwide bending mode.

  • PDF

A Study on the Statistical Characteristics of Rolling Motion of Ships Using Multiple Time Scales (다중 시간법에 의한 선박 횡동요 응답의 통계적 특성 연구)

  • Yun-Cheol Na;Sun-Hong Kwon;Dong-Dai Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.102-110
    • /
    • 1994
  • The roll response of ships to the narrow band random exciting moment is investigated based on the multiple time scale technique. The results are compared with those calculated from statistical equivalent linearization method. The calculation results have shown that the results calculated from multiple time scale technique eve wider range of multiple values. Numerical simulations of rolling motion of ship are performed to confirm the results.

  • PDF

An Expert System for the Real-Time Computer Control of the Large-Scale System (대규모 시스템의 실시간 컴퓨터 제어를 위한 전문가 시스템)

  • Ko, Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.781-788
    • /
    • 1999
  • In this paper, an expert system is proposed, which can be effectively applied to the large-scale systems with the diversity time constraints, the objectives and the unfixed system structure. The inference scheme of the expert system have the integrated structure composed of the intuitive inference module and logical inference module in order to support effectively the operating constraints of system. The intuitive inference module is designed using the pattern matching or pattern recognition method in order to search a same or similar pattern under the fixed system structure. On the other hand, the logical inference module is designed as the structure with the multiple inference mode based on the heuristic search method in order to determine the optimal or near optimal control strategies satisfing the time constraints for system events under the unfixed system structure, and in order to use as knowledge generator. Here, inference mode consists of the best-first, the local-minimum tree, the breadth-iterative, the limited search width/time method. Finally, the application results for large-scale distribution SCADA system proves that the inference scheme of the expert system is very effective for the large-scale system. The expert system is implemented in C language for the dynamic mamory allocation method, database interface, compatability.

  • PDF

A Study on Development of the Perceived Adequacy of Resorces Scale (자원적정지각 척도 개발에 관한 연구)

  • 조영희
    • Journal of Families and Better Life
    • /
    • v.9 no.2
    • /
    • pp.241-251
    • /
    • 1991
  • The Purpose of this study was the development of scale to measure the Perceived Adequacy of Resources(PAR). A 38-item instrument was analysed with responses form 300 wives dwelling in Seoul. PAR was categorized housing, health, time money, interpersonal, knowledge/skills, community resources, Data were analysed by the method of Pearson's Correlation, Factor Analysis and Multiple Regression. Items were loaded eight resource categories such as time housing, money , health, knowledge, social support, community, psychological relationship. Internal consistency of the scale was high(Cronbach's α=.85) The result proposed PAR constructed 28 items.

  • PDF

A Centralized DESYNC Scheme in Small-Scale Wireless Networks (소규모 무선 네트워크에 적합한 중앙제어 방식의 DESYNC 개선 방안)

  • Lee, Nam-Kwon;Hyun, Sang-Hyun;Lee, Je-Yul;Lee, Ku-Won;Yang, Dong-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.731-740
    • /
    • 2015
  • In the recent days, interests in machine-to-machine communication schemes in small-scale networks has been increasing with growing demands. TDMA(Time Division Multiple Access) can be used as a multiple access method in small-scale networks. However, time synchronization for TDMA is complicated or needs additional equipments. Such a large cost is not suitable for small-scale networks. We propose, BC-DESYNC, a efficient time synchronization for small-scale networks by extending DESYNC(DESYNChronization). DESYNC takes a long time to complete synchronization and doesn't guarantee the synchronization delay. BC-DESYNC uses CU(Central Unit) that performs a centralized control to achieve the 2-hop communication and guarantees the synchronization completion time by using Mimic firing and C-DESYNC scheme.

Nonlinear thermal vibration of FGM beams resting on nonlinear viscoelastic foundation

  • Alimoradzadeh, M.;Akbas, S.D.
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.557-567
    • /
    • 2022
  • Nonlinear free vibration analysis of a functionally graded beam resting on the nonlinear viscoelastic foundation is studied with uniform temperature rising. The non-linear strain-displacement relationship is considered in the finite strain theory. The governing nonlinear dynamic equation is derived based on the finite strain theory with using of Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The influences of temperature rising, material distribution parameter, nonlinear viscoelastic foundation parameters on the nonlinear free response and phase trajectory are investigated. In this paper, it is aimed that a contribution to the literature for nonlinear thermal vibration solutions of a functionally graded beam resting on the nonlinear viscoelastic foundation by using of multiple time scale method.

Multiscale method and pseudospectral simulations for linear viscoelastic incompressible flows

  • Zhang, Ling;Ouyang, Jie
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.27-40
    • /
    • 2012
  • The two-dimensional incompressible flow of a linear viscoelastic fluid we considered in this research has rapidly oscillating initial conditions which contain both the large scale and small scale information. In order to grasp this double-scale phenomenon of the complex flow, a multiscale analysis method is developed based on the mathematical homogenization theory. For the incompressible flow of a linear viscoelastic Maxwell fluid, a well-posed multiscale system, including averaged equations and cell problems, is derived by employing the appropriate multiple scale asymptotic expansions to approximate the velocity, pressure and stress fields. And then, this multiscale system is solved numerically using the pseudospectral algorithm based on a time-splitting semi-implicit influence matrix method. The comparisons between the multiscale solutions and the direct numerical simulations demonstrate that the multiscale model not only captures large scale features accurately, but also reflects kinetic interactions between the large and small scale of the incompressible flow of a linear viscoelastic fluid.

Dynamic Analysis of a Cantilever Beam with the Payametric Excitation in Rotation (회전 방향으로 매개 가진되는 외팔보의 동적 해석)

  • Im, Hyung-Bin;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2270-2276
    • /
    • 2002
  • Dynamic stability of a rotary oscillating cantilever beam is presented in this study. Using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle and transformed into dimensionless forms. Stability diagrams of the first order approximate solutions are obtained by using the multiple scale perturbation method. The stability diagrams show that relatively large unstable regions exist near the combination of the first chordwise bending natural frequency and the first stretch natural frequency. This result is verified by using the generalized -$\alpha$ method.

Dynamic Analysis of a Cantilever Beam with the Parametric Exitation in Rotation (회전 방향으로 매개 가진하는 외팔보의 동적 해석)

  • 임형빈;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.335-340
    • /
    • 2001
  • Dynamic stability of a rotary oscillating cantilever beam is presented in this study. Using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle and transformed into dimensionless forms. Stability diagrams of the first order approximate solutions are obtained by using the multiple scale perturbation method. The stability diagrams show that relatively large unstable regions exist near the combination of the first chordwise bending natural frequency and the first stretch natural frequency. This result is verified by using the generalized-${\alpha}$ method.

  • PDF