Data mining is a process of discovering useful patterns for decision making from an amount of data. It has recently received much attention in a wide range of business and engineering fields Classifying a group into subgroups is one of the most important subjects in data mining Tree-based methods, known as decision trees, provide an efficient way to finding classification models. The primary concern in tree learning is to minimize a node impurity, which is evaluated using a target variable in the data set. However, there are situations where multiple target variables should be taken into account, for example, such as manufacturing process monitoring, marketing science, and clinical and health analysis. The purpose of this article is to present several methods for measuring the node impurity, which are applicable to data sets with multiple target variables. For illustrations, numerical examples are given with discussion.
The optimal structure of the Tonpilz transducer was designed. First, the FE model of the transducer was constructed, that included all the details of the transducer which used practical environment. The validity of the FE model was verified through the impedance analysis of the transducer. Second, the resonance frequency, the sound pressure, the bandwidth, and the impulsive shock pressure of the transducer in relation to its structural variables were analyzed. Third, the design method of $2^n$ experiments was employed to reduce the number of analysis cases, and through statistical multiple regression analysis of the results, the functional forms of the transducer performances that could consider the cross-coupled effects of the structural variables were derived. Based on the all results, the optimal geometry of the Tonpilz transducer that had the highest sound pressure level at the desired working environment was determined through the optimization with the SQP-PD method of a target function composed of the transducer performance. Furthermore, for the convenience of a user, the automatic process program making the optimal structure of the acoustic transducer automatically at a given target and a desired working environment was made. The developed method can reflect all the cross-coupled effects of multiple structural variables, and can be extended to the design of general acoustic transducers.
Purpose - This study investigates whether a listing effect exists in cross-border M&As and whether the effect can be attributed to the uncertainty of the GDP growth rate in the target firm's home country. We apply a joint variable analysis using M&A announcement data from the Korea Exchange (KRX), Shanghai Stock Exchange (SSE), and the Taiwan Stock Exchange (TWSE) from 2004 to 2013. We also conduct an event study using the measure of the uncertainty of the GDP growth rate (based on IMF statistics) in 55 target countries. Design/methodology - We measure the abnormal return (AR) using the market-adjusted model. We test the significance of the AR and the cumulative abnormal return (CAR) using a one-sample t-test. We examine the characteristics of the CARs depending on whether the target company is listed by applying a difference analysis using CAR as a test variable. In addition, we set CAR (-5, +5) as a dependent variable to identify the cause of the listing effect, and test both the financial characteristic variables of the acquirer and the collective characteristic variables of the merger as independent variables in the multiple regression analysis. Findings - First, we find the listing effect of cross-border M&As in the KRX, SSE, and TWSE, which represent the capital markets in Korea, China, and Taiwan, respectively. This listing effect persists during the global financial crisis and has a negative effect on the wealth of acquiring shareholders, especially when the target countries are emerging markets. Second, greater uncertainty regarding the target countries' economic growth in cross-border M&As has a negative effect on the wealth of acquiring firms' shareholders. Third, our empirical analysis demonstrates that the listing effect is attributable to the fact that firms listed in a target country with greater uncertainty of economic growth are more directly and greatly exposed to uncertain capital markets through stock markets, than are unlisted firms. Originality/value - This study is significant in that it presents a new strategic perspective in the study of cross-border M&As by demonstrating empirically that the listing effect is attributable to the uncertainty regarding the economic development of the target firms' home countries.
Address Space Randomization(ASR)은 성능 부하가 없고 광범위한 데이터 메모리 영역의 보호가 가능한 우수한 방어 기법이다. ASR은 사용 가능한 데이터 메모리 영역 내에서 변수를 재배치 함으로써 공격자에게 변수의 주소를 숨기는데, 데이터 메모리 영역의 크기가 한정되어서 무차별 공격에 취약한 단점이 있다. 본 논문은 기존 ASR의 단점을 제거하기 위한 다중 ASR 기법을 제시한다. 다중 ASR 기법은 데이터 메모리 영역을 원본 및 복사 영역으로 나누고 각 메모리 영역의 변수 값을 비교함으로써 공격을 탐지하고 방어한다. 다중 ASR에서 각 데이터 메모리 영역의 변수는 서로 다른 순서로 배치되므로 한 번의 공격을 통해 동시에 동일한 변수 값을 조작하는 것은 불가능하다. 다중 ASR이 적용된 프로그램은 중복 수행으로 인해 비교적 높은 성능 부하를 보이나, 실제 공격 대상이 되는 웹서버 등 I/O 처리가 많이 요구되는 프로그램의 경우 40%~50% 정도의 성능 부하를 보인다. 아울러 본 논문에서는 프로그램에 다중 ASR을 적용하기 위한 변환프로그램을 개발하였다.
Journal of the Korean Data and Information Science Society
/
제22권5호
/
pp.877-884
/
2011
의사결정나무는 데이터마이닝의 대표적인 알고리즘으로서, 의사결정 규칙을 도표화하여 관심대상이 되는 집단을 몇 개의 소집단으로 분류하거나 예측을 수행하는 방법이다. 일반적으로 의사결정나무의 모형 생성 시, 입력 변수의 수가 많을 경우 생성된 의사결정모형은 복잡한 형태가 될 수 있고, 모형 탐색 및 분석에 있어 어려움을 겪기도 한다. 이때 입력변수들 간의 내재적인 관련성은 없으나, 외적 변수에 의하여 각 변수가 우연히 어떤 다른 변수와 연결됨으로써 관련성이 있는 것으로 나타나는 것을 종종 볼 수 있다. 이에 본 논문에서는 의사결정나무 생성 시, 입력 변수에 대한 외적 관계를 파악할 수 있는 다중외적연관성규칙을 이용하여 의사결정나무 생성에 불필요한 입력변수를 제거하는 방법을 제시하고 그 효율성을 파악하기 위하여 실제 자료에 적용하고자 한다.
Ji, Cheong-Il;Cho, Sueng-Mock;Gu, Yeun-Suk;Kim, Seon-Bong
Food Science and Biotechnology
/
제16권4호
/
pp.557-564
/
2007
We prepared caviar analogs encapsulated by calcium-alginate gel membranes as a means to replace higher priced natural caviars. Processing the caviar analogs (beluga type) was optimized by response surface methodology with central composite design. Concentrations of sodium alginate ($X_1$) and $CaCl_2\;(X_2)$ were chosen as the independent variables. In order to compare characteristics of the caviar analogs with the natural caviar, sphericity ($Y_1$), diameter ($Y_2$), membrane thickness ($Y_3$), rupture strength ($Y_4$), rupturing deformation ($Y_5$), and sensory score ($Y_6$) were used as the dependent variables. The sphericity of the caviar analogs showed a similar value to that of natural caviar (over 94%) in the range of independent variables. Generally, the $CaCl_2$ concentration ($X_2$) affected all dependent variables to a greater extent than the sodium alginate concentration ($X_l$), For the multiple response optimization of the 5 dependent variables ($Y_1,\;Y_2,\;Y_4,\;Y_5$, and $Y_6$), the desirability function was defined as the following conditions: target values ($Y_1\;=\;100%,\;Y_2\;=\;3.0\;mm,\;Y_4\;=\;1,470\;g,\;Y_5\;=\;1.1\;mm,\;and\;Y_6\;=\;10\;points$). Membrane thickness ($Y_3$) was eliminated from the dependent variables for multiple response optimization because it could not be measured with an image analyzer. The values of the independent variables as evaluated by multiple response optimization were $X_1\;=\;-0.093$ (78%) and $X_2\;=\;-0.322$ (1.07%), respectively.
A method is proposed for the simultaneous optimization of several response functions that depend on the same set of controllable variables and are adequately represented by a response surface model (polynomial regression model) with the same degree and with constraint that the individual responses have the target values. First, the multiple responses data are checked for linear dependencies among the responses by eigenvalue analysis. Thus a set of responses with no linear functional relationships is used in developing a function that measures the distance estimated responses from the target values. We choose the optimal condition that minimizes this measure. Also, under the different degree of importance two step procedures are proposed.
A machine learning platform is proposed for the diagnosis of a severe accident progression in a nuclear power plant. To predict the key parameters for accident management including lost signals, a long short term memory (LSTM) network is proposed, where multiple accident scenarios are used for training. Training and test data were produced by MELCOR simulation of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident at unit 3. Feature variables were selected among plant parameters, where the importance ranking was determined by a recursive feature elimination technique using RandomForestRegressor. To answer the question of whether a reduced order ML model could predict the complex transient response, we performed a systematic sensitivity study for the choices of target variables, the combination of training and test data, the number of feature variables, and the number of neurons to evaluate the performance of the proposed ML platform. The number of sensitivity cases was chosen to guarantee a 95 % tolerance limit with a 95 % confidence level based on Wilks' formula to quantify the uncertainty of predictions. The results of investigations indicate that the proposed ML platform consistently predicts the target variable. The median and mean predictions were close to the true value.
The purpose of parameter design is to determine optimal settings of design parameters of a product or a process such that the performance characteristics of a product exhibit small variabilities around their target values. Taguchi made significant contributions in this area. However, his analysis of the problem focused on only one performance characteristic or response, although in product and process design, multiple characteristics are more common. The critical problem in dealing with multiple characteristics is how to compromise the conflict among the selected levels of the design parameters for each individual characteristic. In this paper, Methodology using SN ratio optimized by univariate technique is proposed and a parameter design procedure to achieve the optimal balance among several different response variables is developed. Existing case studies are solved by the proposed method and the results are compared with ones by the sum of SN ratios, the expected weighted loss, the desirability function, and EXTOPSIS model.
데이터마이닝은 많은 양의 데이터로부터 의사결정에 유용한 패턴을 발견하는 과정으로서 최근 경영 및 공학 분야의 폭넓은 영역에서 많은 관심을 모으고 있다. 어떤 그룹을 여러 하위그룹으로 분류해내는 일은 데이터마이닝의 주요 내용 중 하나이다. 의사결정나무로 알려진 트리기반 기법은 그러한 분류모형을 수립하는 데 효율적인 방안을 제공한다 트리학습에 있어서 우선적인 관건은 목표변수에 의해 측정되는 노드불순도를 최소화하는 것이다. 하지만 공정관측, 마케팅과학, 임상분석 등과 같은 문제에서는 여러 목표변수를 동시에 고려해야 하는 상황이 쉽게 등장하는 데, 본 논문의 목적은 이처럼 다변량 목표변수를 갖는 데이터셋에서 활용할 수 있는 노드불순도 측정방안을 제시하는 데 있다. 아울러 수치 예를 이용하여 적용결과에 대해 논의한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.