• Title/Summary/Keyword: Multiple Target

Search Result 1,473, Processing Time 0.03 seconds

Target Motion Analysis with the IMMPDAF for Sonar Resource Management (IMMPDAF를 Sonar Resource Management에 적용한 기동표적분석 연구)

  • 임영택;송택렬
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.331-337
    • /
    • 2004
  • Target motion analysis with a sonar system in general uses a regular sampling time and thus obtains regular target information regardless of the target maneuver status. This often results in overconsumption of the limited sonar resources. We propose two methods of the IMM(interacting Multiple Model) PDAF algorithm for sonar resource management to improve target motion analysis performance and to save sonar resources in this paper. In the first method, two different process noise covariance which are used as mode sets are combined based on probability. In the second method, resource time which are processed from two mode sets is calculated based on probability and then considered as update time at next step. Performance of the proposed algorithms are compared with the other algorithms by a series of Monte Carlo simulation.

Determination of the number of 235U target nuclei in the irregular target using a fission time projection chamber

  • Jiajun Zhang;Jun Xiao;Junjie Sun;Mingzhi Zhang;Taiping Peng;Pu Zheng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.444-450
    • /
    • 2024
  • Based on multiple measurements of ionization loss, the Time Projection Chamber (TPC) combines strong tracking ability with particle identification ability in a large momentum range, which is an important advantage of TPC detection technology over traditional ionization measurement technology. According to these two characteristics of TPC, applying it to the measurement of fission cross-section can greatly improve the measurement accuracy. During the measurement of the fission cross-section, the number of target nuclei is required to be accurately measured. So this paper introduces a method for measuring the number of 235U target nuclei using a fission TPC system. The measurement result agrees with the reference value, and relative error is around 1 %.

Resolution Conversion of SAR Target Images Using Conditional GAN (Conditional GAN을 이용한 SAR 표적영상의 해상도 변환)

  • Park, Ji-Hoon;Seo, Seung-Mo;Choi, Yeo-Reum;Yoo, Ji Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.12-21
    • /
    • 2021
  • For successful automatic target recognition(ATR) with synthetic aperture radar(SAR) imagery, SAR target images of the database should have the identical or highly similar resolution with those collected from SAR sensors. However, it is time-consuming or infeasible to construct the multiple databases with different resolutions depending on the operating SAR system. In this paper, an approach for resolution conversion of SAR target images is proposed based on conditional generative adversarial network(cGAN). First, a number of pairs consisting of SAR target images with two different resolutions are obtained via SAR simulation and then used to train the cGAN model. Finally, the model generates the SAR target image whose resolution is converted from the original one. The similarity analysis is performed to validate reliability of the generated images. The cGAN model is further applied to measured MSTAR SAR target images in order to estimate its potential for real application.

Systematic Topology Selection Method for Multiple-Input DC-DC Converters

  • Choung, Seung H.;Bae, Sungwoo;Kim, Myungchin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.915-920
    • /
    • 2016
  • A power system designer may have difficulties in choosing a suitable multiple-input converter topology for a specific target application because each multiple-input converter topology presented in the literature has its own advantages and disadvantages. In this perspective, this paper presents a systematic topology selection method for multiple-input converters with three comparison criteria including cost-saving effect, modularity potential and flexibility. Based on these criteria, this paper proposes a strategic flow chart example for choosing a proper multiple-input converter topology. This flow chart will provide a powerful selection tool to a power system designer when he or she chooses a specific multiple-input converter for a given application.

Area-Based Q-learning Algorithm to Search Target Object of Multiple Robots (다수 로봇의 목표물 탐색을 위한 Area-Based Q-learning 알고리즘)

  • Yoon, Han-Ul;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.406-411
    • /
    • 2005
  • In this paper, we present the area-based Q-learning to search a target object using multiple robot. To search the target in Markovian space, the robots should recognize their surrounding at where they are located and generate some rules to act upon by themselves. Under area-based Q-learning, a robot, first of all, obtains 6-distances from itself to environment by infrared sensor which are hexagonally allocated around itself. Second, it calculates 6-areas with those distances then take an action, i.e., turn and move toward where the widest space will be guaranteed. After the action is taken, the value of Q will be updated by relative formula at the state. We set up an experimental environment with five small mobile robots, obstacles, and a target object, and tried to search for a target object while navigating in a unknown hallway where some obstacles were placed. In the end of this paper, we presents the results of three algorithms - a random search, area-based action making (ABAM), and hexagonal area-based Q-teaming.

Effect of Distractor Memorability on Target Memory Performance (방해자극의 기억용이성이 목표자극의 기억 수행에 미치는 영향)

  • Jeong, Su Keun
    • Science of Emotion and Sensibility
    • /
    • v.25 no.2
    • /
    • pp.3-10
    • /
    • 2022
  • Memorability is an indicator of how well a stimulus can be remembered. Studies on memorability have shown that stimulus memorability cannot be explained by the perceptual and semantic properties of a stimulus, suggesting that memorability is an intrinsic property of a stimulus. Though real-world scenes almost always contain multiple objects, previous studies on memorability have mainly tested memory performance using a single stimulus. In the current study, we investigated how multiple stimuli with different levels of memorability interact with each other. Participants were asked to remember a high or low memorability target presented with a high or low memorability distractor in the encoding block. Participants' memory accuracy was measured by a sensitivity index in the testing block. Results showed that a high memorability target was easier to remember. However, the distractor memorability level did not modulate this target memorability effect. The current results support previous studies that showed a highly memorable stimulus does not automatically induce bottom-up attentional shifts.

Dual-Target Gene Silencing by Using Long, Synthetic siRNA Duplexes without Triggering Antiviral Responses

  • Chang, Chan Il;Kang, Hye Suk;Ban, Changill;Kim, Soyoun;Lee, Dong-ki
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.689-695
    • /
    • 2009
  • Chemically synthesized small interfering RNAs (siRNAs) can specifically knock-down expression of target genes via RNA interference (RNAi) pathway. To date, the length of synthetic siRNA duplex has been strictly maintained less than 30 bp, because an early study suggested that double-stranded RNAs (dsRNAs) longer than 30 bp could not trigger specific gene silencing due to the induction of non-specific antiviral interferon responses. Contrary to the current belief, here we show that synthetic dsRNA as long as 38 bp can result in specific target gene silencing without non-specific antiviral responses. Using this longer duplex structure, we have generated dsRNAs, which can simultaneously knock-down expression of two target genes (termed as dual-target siRNAs or dsiRNAs). Our results thus demonstrate the structural flexibility of gene silencing siRNAs, and provide a starting point to construct multifunctional RNA structures. The dsiRNAs could be utilized to develop a novel therapeutic gene silencing strategy against diseases with multiple gene alternations such as viral infection and cancer.

Experimental Verification of Multi-Sensor Geolocation Algorithm using Sequential Kalman Filter (순차적 칼만 필터를 적용한 다중센서 위치추정 알고리즘 실험적 검증)

  • Lee, Seongheon;Kim, Youngjoo;Bang, Hyochoong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Unmanned air vehicles (UAVs) are getting popular not only as a private usage for the aerial photograph but military usage for the surveillance, reconnaissance and supply missions. For an UAV to successfully achieve these kind of missions, geolocation (localization) must be implied to track an interested target or fly by reference. In this research, we adopted multi-sensor fusion (MSF) algorithm to increase the accuracy of the geolocation and verified the algorithm using two multicopter UAVs. One UAV is equipped with an optical camera, and another UAV is equipped with an optical camera and a laser range finder. Throughout the experiment, we have obtained measurements about a fixed ground target and estimated the target position by a series of coordinate transformations and sequential Kalman filter. The result showed that the MSF has better performance in estimating target location than the case of using single sensor. Moreover, the experimental result implied that multi-sensor geolocation algorithm is able to have further improvements in localization accuracy and feasibility of other complicated applications such as moving target tracking and multiple target tracking.

Comparison of network pharmacology based analysis on White Ginseng and Red Ginseng (인삼(人蔘)과 홍삼(紅蔘)의 네트워크 약리학적 분석 결과 비교)

  • Park, Sohyun;Lee, Byoungho;Jin, Myungho;Cho, Suin
    • Herbal Formula Science
    • /
    • v.28 no.3
    • /
    • pp.243-254
    • /
    • 2020
  • Objectives : Network pharmacology analysis is commonly used to investigate the synergies and potential mechanisms of multiple compounds by analyzing complex, multi-layered networks. We used TCMSP and BATMAN-TCM databases to compare results of network pharmacological analysis between White Ginseng(WG) and Red Ginseng(RG). Methods : WG and RG were compared with components and their target molecules using TCMSP database, and compound-target-pathway/disease networks were compared using BATMAN-TCM database. Results : Through TCMSP, 104 kinds of target molecules were derived from WG and 38 kinds were derived from RG. Using the BATMAN-TCM database, target pathways and diseases were screened, and more target pathways and diseases were screened compared to RG due to the high composition of WG ingredients. Analysis of component-target-pathway/disease network using network analysis tools provided by BATMAN-TCM showed that WG formed more networks than RG. Conclusions : Network pharmacology analysis can be effectively performed using various databases used in system biology research, and although the materials that have been reported in the past can be used efficiently for research on diseases related to targets, the results are unreliable if prior studies are focused on limited or narrow research areas.

Position Estimation of Underwater Target Using Proximity Sensor with Bearing Information (근접 센서의 방위정보를 이용한 수중표적 예상위치 추정 기법)

  • Choi, Young-Doo;Kim, Jung-Hoon;Yoon, Kyung-Sik;Seo, Ik-Su;Lee, Dong-Hun;Lee, Kyun-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.422-429
    • /
    • 2014
  • Proximity sensor networks are aimed at estimation kinematic state of target using estimated position of the target by each sensor node or target parameter. To analyze the kinematic state of target, traditional approaches require detections on multiple sensors, very large number of sensors to achieve acceptable performance. In this paper, we propose a novel method which can estimate predicted position of the underwater target using minimum proximity sensor with bearing information to this problem. The proposed algorithm was verified performance through simulation.