• Title/Summary/Keyword: Multiple Skyline Queries

Search Result 4, Processing Time 0.023 seconds

Multiple Continuous Skyline Query Processing Over Data Streams (다중 연속 스카이라인 질의의 효율적인 처리 기법)

  • Lee, Yu-Won;Lee, Ki-Yong;Kim, Myoung-Ho
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.4
    • /
    • pp.165-179
    • /
    • 2010
  • Recently, the processing of data streams such as stock quotes, buy-sell orders, and billing records becomes more important in e-Business environments. Especially, the use of skyline queries over data streams is rapidly increasing to support multiple criteria decision making. Given a set of multi-dimensional tuples, a skyline query retrieves a set of tuples which are not dominated by other tuples. Although there has been much work on processing skyline queries over static datasets, there has been relatively less work on processing multiple skyline queries over data streams. In this paper, we propose an efficient method for processing multiple continuous skyline queries over data streams. The proposed method efficiently identifies which tuple is a skyline tuple of which query, resulting in a lower cost of processing multiple skyline queries. Through performance evaluation, we show the performance advantage of the proposed method.

An Efficient Grid Method for Continuous Skyline Computation over Dynamic Data Set

  • Li, He;Jang, Su-Min;Yoo, Kwan-Hee;Yoo, Jae-Soo
    • International Journal of Contents
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • Skyline queries are an important new search capability for multi-dimensional databases. Most of the previous works have focused on processing skyline queries over static data set. However, most of the real applications deal with the dynamic data set. Since dynamic data set constantly changes as time passes, the continuous skyline computation over dynamic data set becomes ever more complicated. In this paper, we propose a multiple layer grids method for continuous skyline computation (MLGCS) that maintains multiple layer grids to manage the dynamic data set. The proposed method divides the work space into multiple layer grids and creates the skyline influence region in the grid of each layer. In the continuous environment, the continuous skyline queries are only handled when the updating data points are in the skyline influence region of each layer grid. Experiments based on various data distributions show that our proposed method outperforms the existing methods.

Efficiently Processing Skyline Query on Multi-Instance Data

  • Chiu, Shu-I;Hsu, Kuo-Wei
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1277-1298
    • /
    • 2017
  • Related to the maximum vector problem, a skyline query is to discover dominating tuples from a set of tuples, where each defines an object (such as a hotel) in several dimensions (such as the price and the distance to the beach). A tuple, an instance of an object, dominates another tuple if it is equally good or better in all dimensions and better in at least one dimension. Traditionally, skyline queries are defined upon single-instance data or upon objects each of which is associated with an instance. However, in some cases, an object is not associated with a single instance but rather by multiple instances. For example, on a review website, many users assign scores to a product or a service, and a user's score is an instance of the object representing the product or the service. Such data is an example of multi-instance data. Unlike most (if not all) others considering the traditional setting, we consider skyline queries defined upon multi-instance data. We define the dominance calculation and propose an algorithm to reduce its computational cost. We use synthetic and real data to evaluate the proposed methods, and the results demonstrate their utility.

An Improved Skyline Query Scheme for Recommending Real-Time User Preference Data Based on Big Data Preprocessing (빅데이터 전처리 기반의 실시간 사용자 선호 데이터 추천을 위한 개선된 스카이라인 질의 기법)

  • Kim, JiHyun;Kim, Jongwan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.189-196
    • /
    • 2022
  • Skyline query is a scheme for exploring objects that are suitable for user preferences based on multiple attributes of objects. Existing skyline queries return search results as batch processing, but the need for real-time search results has increased with the advent of interactive apps or mobile environments. Online algorithm for Skyline improves the return speed of objects to explore preferred objects in real time. However, the object navigation process requires unnecessary navigation time due to repeated comparative operations. This paper proposes a Pre-processing Online Algorithm for Skyline Query (POA) to eliminate unnecessary search time in Online Algorithm exploration techniques and provide the results of skyline queries in real time. Proposed techniques use the concept of range-limiting to existing Online Algorithm to perform pretreatment and then eliminate repetitive rediscovering regions first. POAs showed improvement in standard distributions, bias distributions, positive correlations, and negative correlations of discrete data sets compared to Online Algorithm. The POAs used in this paper improve navigation performance by minimizing comparison targets for Online Algorithm, which will be a new criterion for rapid service to users in the face of increasing use of mobile devices.