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Abstract 
Related to the maximum vector problem, a skyline query is to discover dominating tuples from a set of tuples, 
where each defines an object (such as a hotel) in several dimensions (such as the price and the distance to the 
beach). A tuple, an instance of an object, dominates another tuple if it is equally good or better in all 
dimensions and better in at least one dimension. Traditionally, skyline queries are defined upon single-
instance data or upon objects each of which is associated with an instance. However, in some cases, an object 
is not associated with a single instance but rather by multiple instances. For example, on a review website, 
many users assign scores to a product or a service, and a user’s score is an instance of the object representing 
the product or the service. Such data is an example of multi-instance data. Unlike most (if not all) others 
considering the traditional setting, we consider skyline queries defined upon multi-instance data. We define 
the dominance calculation and propose an algorithm to reduce its computational cost. We use synthetic and 
real data to evaluate the proposed methods, and the results demonstrate their utility. 
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1. Introduction 
A skyline query is to discover dominating and therefore interesting tuples from a database. A tuple is 

usually composed of several fields or dimensions, and it dominates another tuple if it is equally good or 
better in all dimensions and better in at least one dimension. A skyline tuple is one that is in the result 
of a skyline query or is part of the answer of a skyline query, and it is one that dominates some others 
and is not dominated by any other. An object could represent a product or a service, such as a hotel or a 
restaurant, and a tuple is an instance of an object and defines an object in several dimensions, such as 
the price and the distance to the beach or such as the service, the food, and the décor. 

Efficiently processing skyline queries is important and valuable. In theory, skyline queries are related 
to the maximum vector problem and multi-criteria decision making. In practice, they have seen a wide 
range of applications, such as product or service search, ranking, and recommendation systems. Let us 
consider the following two examples showing how skyline queries can be used and can be useful [1]. 

Example 1, adapted from the classic example given in [2]: a person plans to have a vacation in a city 
by a sea and he or she is looking for a hotel that is cheap and close to the beach. However, the hotels 
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near the beach are more usually expensive, while and the cheap ones are usually far away from the 
beach. The person is unable to decide which one is the best hotel for him or her. It will be easier for the 
person to make the decision if he or she can have a list of interesting hotels, where interesting hotels are 
those that are not worse than any other hotel in the price and the distance to the beach. A hotel is an 
object, and it is represented or defined by a tuple in the database, where a tuple is composed of two 
dimensions, namely the price and the distance to the beach. The list of interesting hotels is the answer 
of a skyline query, and those interesting hotels are skyline tuples. After having the list, the person can 
make the decision according to his or her personal preferences towards the two factors, namely the 
price and the distance to the beach. As explained in [2], there will be a hotel that is best for the person, 
no matter how he or she weighs his or her personal preferences towards the two factors. This example 
also implies that skyline queries are also related the problem of multi-criteria decision making. 

Example 2, adapted from the example given in [3]: A person is referring to a restaurant from a 
guidebook, in which each restaurant is reviewed with respect to three criteria, namely the service, the 
food, and the décor. The person is looking for a restaurant that provides the best service, the best food, 
and the best décor and is the lowest priced. However, there is no restaurant that is better than all others 
on every criterion and cheaper than all others on the price; if there is one, the guidebook will become 
unnecessary. Although there is no restaurant that is absolutely best, the person can at least exclude from 
consideration the uninteresting ones (non-skyline tuples) each of which is worse than some others on 
every criterion. 

Traditionally, an object is associated with exactly a tuple or an instance, and the answer of a skyline 
queries is in fact a set of interesting objects, each of which is associated with a dominating tuple. 
Therefore, traditional skyline queries are defined upon single-instance data. The data in Example 1 is 
single-instance data, and so is that in Example 2. In some cases, however, an object is not represented or 
defined by a single tuple but rather by multiple tuples. For example, on a review website, many users 
assign scores to and/or write reviews of a product or a service. A user’s score is a tuple or an instance, 
and a product or a service is an object that is associated with multiple tuples or instances. We call such 
data multi-instance data. In Example 1, if hotels are reviewed by visitors with respect to other criteria, 
especially subjective ones, such as the service and the convenience, then the data is multi-instance data 
and existing algorithms (for single-instance data) can no longer be used. In Example 2, if reviews are 
not from the critics (who contribute to the guidebook) but from general users, then a restaurant will 
possibly be reviewed by many users and be associated with many tuples in the database. The data is 
multi-instance data and, again, existing algorithms cannot be used. What we are interested in is not 
tuples or instances but objects. If we directly apply existing algorithms to, for example, the data on the 
review website, then we will have “dominating scores” (which are not quite meaningful) instead of 
interesting products or services. 

As e-commerce still booms worldwide, the studies on and the applications of skyline queries are 
blooming. As the number of review websites increases, the demand for discovering skyline objects from 
multi-instance data becomes stronger. In order to use an existing algorithm to answer or process 
skyline queries on multi-instance data, we need to do data transformation first. We can average the 
values of all instances associated with an object. We can do so for each object, and then we can 
transform multi-instance data into single-instance data, where an instance in the latter is an averaged 
value. The problem with this approach, an indirect approach, is the same as the problem with any other 
approach in which the vulnerable averages or means are used. We propose a direct approach. We 
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consider skyline queries defined upon multi-instance data. First of all, we define the dominance 
calculation, which is essential for the comparison of tuples and the determination of skyline objects. 
We propose an algorithm to answer or process skyline queries on multi-instance data. Such data is 
different from the traditional data (that is, single-instance data). The typical skyline query processing 
cannot be used on the multi-instance data. Nowadays, data on many review websites belongs to multi-
instance data. We propose a formal definition of multi-instance data, and we attempt to directly process 
the skyline query on multi-instance data. In addition, we propose methods that can reduce the 
computational cost and consequently boost runtime performance. Finally, the results that we obtain 
from experiments which synthetic and real data are used in demonstrating the utility of the proposed 
methods. We use the generated data to examine our methods, BNL algorithm, and D&C algorithm in 
order to compare with other studies [4,5]. The contributions are two-fold: First, we define the 
dominance relation on multi-instance data and propose a way speed up the skyline query processing; 
second, for example, review websites can display not only the average of values of products or services 
(objects) but also interesting individual reviews (instances) by using our methods. In addition, our 
proposed functions can finish the skyline computation early. 

This paper extends [6]. Compared to [6], this paper generalizes the type of data, reorganizes the 
theoretical content, provides new experiment results and more discussion, and presents potential 
applications. 

The remainder of this paper is organized as follows. Section 2 reviews related works, defines the 
dominance calculation and presents the algorithms. Section 3 reports a systematic performance study 
on synthetic and real data. Finally, Section 4 concludes this paper. 

 
 

2. Materials and Methods 

2.1 Related Works 
 

The skyline operation is proposed to extend database systems [1]. This operation is to discover a set 
of interesting tuples from a potentially large set of tuples. The basic way to compute the skyline is to 
apply block-nested-loop (BNL) algorithm and compare every tuple with every other tuple [2]. In [2], 
the authors also use divide-and-conquer (D&C) algorithm [4] to implement the skyline query. Two 
progressive techniques are proposed in [5], and they are the Bitmap and the Index techniques. A 
database index is a data structure that improves the speed of data retrieval operations on a database 
table at the cost of additional storage space and writes to maintain the index data structure. An index is 
used to quickly locate data without having to search every row in a database table every time a database 
table is accessed. Nearest neighbor (NN) uses the results of nearest neighbor search to partition the data 
universe recursively [5]. NN executes a nearest neighbor query on R-trees. In [5], the authors mention 
that NN has some desirable features (such as high speed for returning the initial skyline tuples) but 
presents several inherent disadvantages (such as the need for duplicate elimination if the dimension is 
larger than 2, multiple accesses of the same node, and large space overhead). So, the authors developed 
branch-and-bound skyline (BBS) [5,7]. 

Some works sort the input data to speed up the performance of queries [1,3,8-13]. The sorting-based 
algorithms aim to optimize pivot ordering to prune non-skyline tuples early. The first sorting-based 
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algorithm is sort-filter-skyline (SFS) algorithm [3]. In [7], the authors define the monotone scoring 
function (ordered from highest to lowest score) which is a topological sort with respect to the skyline 
dominance partial relation. We also define a monotone function in this paper. Godfrey et al. mention 
that the maximal vector problem has been rediscovered in the database context with the introduction of 
skyline query [9]. Computing the skyline is known as the maximum vector problem [8,14,15]. In [9], 
the authors present a new algorithm for maximal vector computation, linear elimination sort for skyline 
(LESS), that combines aspects of SFS, BNL, and fast linear expected-time (FLET) [13] but does not 
contain any aspects of D&C. LESS must sort the tuples initially; LESS is an optimized version of SFS [9]. 
In [12], sort and limit skyline algorithm (SaLSa) exploits the idea of presorting the input data so as to 
effectively limit the number of tuples to be read and compared. The SaLSa strives to avoid scanning the 
complete set of sorted tuples and its feature is the ability of computing the result without having to 
apply dominance tests to all the tuples in the input relation [12]. Many algorithms such as SFS, LESS 
and SaLSa need to sort tuples first, and so do our methods. 

In addition, the partitioning-based algorithms aim to group tuples into sub-regions which are used 
for region-based dominance tests. D&C [2] simply divides the problem into multiple sub-problems and 
merges the local skyline tuples into global ones. Zhang et al. [10] propose an object-based space 
partitioning (OSP) scheme, which recursively divides the data space into separate partitions with 
respect to a reference skyline tuple and facilitates progressive retrieval in high dimensional spaces. 

Table 1 summarizes the features of skyline query processing algorithms in the literature, and Table 2 
summarizes related works according to their features. 

 
Table 1. The features of skyline query processing algorithms 

Features Description Abbreviation 

Sorting technique Researchers sort the input data by using some functions ST 

Dominance checking approach Researchers use some methods to reduce calculations DA 

Indexing technique Researchers build index to speed up IT 

Application Researchers evaluate their algorithms with real data Ap 

 
Table 2. The summary of related works 

Ref. Algorithm ST DA IT Ap 
[4] BNL, D&C No No Yes Yes 
[5] Bitmap, Index Yes No Yes No 

[3,8] SFS Yes No No No 
[11] NN Yes No Yes Yes 
[5,9] BBS Yes Yes Yes Yes 
[9] LESS Yes Yes No No 

[12] SaLSa Yes Yes No No 
[10] OSP Yes Yes Yes No 

 

In the typical application to which our methods can be applied, users assign scores to items or objects 
and then these scores are transformed into multi-instance data by the proportion method. An object 
can contain a series of probability values. Many prior works show that skyline query is very useful in 
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multi-criteria decision making applications [3-13]. Uncertainty in data is inherent in many applications 
such as sensor networks, scientific data management, data integration, where data take different values 
with probabilities [16]. Probabilistic data are unavoidable in some important applications. The first 
work on supporting the skyline query on such data, called p-skyline, is reported in [19], in which the 
authors consider analyzing professional basketball players using multiple technical statistics criteria and 
attempt to find the player who can achieve the best performance in all aspects. In [19], the authors 
propose a probabilistic skyline model in which an uncertain tuple may take on a probability of being on 
the skyline called p-skyline. Given a threshold p (0 ≤ p ≤ 1), the p-skyline is the set of uncertain objects, 
each of which takes a probability of at least p to be on the skyline [17,18]. In [17], the definition of an 
instance is different from that in this paper. Atallah and his colleagues [16,19] propose a general 
probabilistic skyline query that takes into account different user utilities without any restriction, but 
they do not use any probability threshold. Liu et al. [1] propose a new uncertain skyline model called u-
skyline, and it aims to return an uncertain skyline answer set from a complementary perspective to p-
skyline. Furthermore, p-skyline returns individual data tuples with non-dominance probabilities greater 
than or equal to a specified threshold [1], while u-Skyline focuses on returning an answer set that forms 
a valid skyline with the maximum probability [1]. 

Most works assume that uncertainty exists only in attribute values [20]. Zhang et al. [20] address the 
skyline probability computation problem in scenarios where uncertainty resides in attribute preferences 
instead of values. The approach used in [20] assumes independent object dominance. The previous 
works discuss probabilistic skylines and skyline query for probabilistic data; we summarize these works 
according to their features in Table 3. Our work is different from others in that it is for multi-instance 
data instead of the traditionally defined uncertain data. The dominance relation between two objects in 
this paper is the sum of the probabilities that the higher score can dominate the lower score. In p-
skyline, a probability for a tuple is defined by aggregating over all the possible worlds within which the 
tuple is dominated. We calculate the dominance relation between two objects and then determine the 
one that could potentially be on the skyline. If the determined object is not dominated by others, it is a 
skyline object and is returned as an answer to the query. 

We summarize comparisons between our work and related works in Table 4. Table 4 also describes 
the originality of our work. 

Considering the increasingly large amount of data, Cosgaya-Lozano et al. [22] show that parallel 
computing is an effective method to speed up the skyline query processing on large datasets. Many 
works consider parallelized methods that utilize multiple processors or obtain useful partitions of the 
dataset for parallel processing [23-26]. We focus on effectively processing skyline query on a special 
type of data. Nevertheless, part of future work could be to parallelize our methods. 

 
Table 3. The summary of related works on probabilistic data 

Ref. Algorithms ST DA IT Ap 
[17] The bottom-up and the top-down algorithms Yes No Yes Yes 

[16,19] Weighted dominance counting (WDC) Yes Yes No No 
[21] Skyline feature algorithm (SFA) Yes Yes Yes No 
[18] Bottom-up and top-down hybrid algorithm Yes Yes Yes Yes 
[2] Dynamic programming search algorithm Yes Yes No No 

[20] Monte Carlo estimation algorithm Yes Yes No Yes 
This paper Our methods (Sec. 2.3) Yes Yes No Yes 
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Table 4. The summary of comparisons between our work and related works 
Features Our work Related works 

Sorting technique Ours and theirs sort the input data to reduce the computational cost 
and speed up the performance [1,3,8-13] 

Instance The instance in their definition is different from that in ours [17] 

Dominance relation 

They define a probability for each tuple by aggregating over all the 
possible worlds within which the tuple is dominated, while we define 
the dominance relation to be the sum of the probabilities that the 
higher score can dominate the lower score 

[18] 

Monotone function They define the monotone scoring function, and that is different 
from what we use [3,9] 

Skyline object 
If an object is not dominated by others, it is a skyline object and is 
returned as an answer to a query; this is consistent with the skyline 
query on certain data 

[2-16] 

 

2.2 Definitions 
  

In this subsection, we formally define the dominance relation and skyline query on multi-instance 
data and review some relevant studies on skyline query. 

DEFINITION 1. (Tuple). A tuple is a record in a database. It is usually composed of several fields. For 
example, a tuple could contain a score (usually a vector) given by a user. 

DEFINITION 2. (Dimension). A dimension is a field, attribute or criterion. A tuple is usually composed 
of several dimensions. 

DEFINITION 3. (Object). An object is usually composed of several dimensions, and for example, it 
could be a restaurant, product or service to which many users assign scores. An object is also called an 
item. 

DEFINITION 4. (Instance). A score (usually a vector) given by a user is an instance of an object 
representing, for example, a restaurant, product or service on a review website. 

DEFINITION 5. (Multi-instance data). Many users assign scores to and/or write reviews of, for 
example, a restaurant, product or service. An object is associated with multiple instances. Such data is 
defined as multi-instance data.  

DEFINITION 6. (Dominance relation). Let U and V be two tuples in a d-dimensional space. The 
dominance relation is presented on the preference attributes (from 1 to d). We assume that bigger 
values are better. For every dimension i (1 ≤ i ≤ d), if Ui ≤ Vi and there exists a dimension j (1 ≤ j ≤ d) 
such that Uj < Vj, then V dominates U, denoted by U ˂ V. 

We propose to identify objects by using the skyline query on multi-instance data. First, we transform 
score data into multi-instance data for each object.  

Let us consider the following example: a restaurant is reviewed by many users and the scores range 
from 1 to 5. Table 5 presents a 3-dimensional score dataset containing 14 scores (from 14 users). In 
Table 5, Pid and Cid are identifiers for a restaurant and a user, respectively, and 3 dimensions are for 
food, service, and décor. We group these scores by Pid and then transform the score data in Table 5 into 
the multi-instance data in Table 6. Table 6 show multi-instance data for R1 and R2, respectively. 
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If a random variable X is discrete (i.e. it takes a value from a specific set of n values xi, 1 ≤ i ≤ n), then 
P(X = xi) = p(xi) where p(xi) is the probability mass function and p(xi) denotes the probability of score 
being xi. When xi is an assigned score, p(xi) is calculated by (1): 
 

�ℎ� �����	 
� ���	�	
�������� ��
	� ��

∑���	� 
��������	��
	�� �
 
� 
����� (1) 

 

An object is described by a probability mass function in the data space. We perform data 
transformation. So, this object R1 in the example in Table 6 is denoted by <(1,0), (2,0), (3,0.1), (4,0.4), 
(5,0.5), (1,0), (2,0), (3,0), (4,0.5), (5,0.5), (1,0), (2,0.2), (3,0.5), (4,0.2), (5,0.1)>. 

 
Table 5. An example score dataset 

Pid Cid Food score Service score Décor score 
R1 C1 3 4 3 
R1 C2 5 5 4 
R2 C3 3 2 4 
R1 C4 5 4 3 
R1 C5 5 5 4 
R1 C6 5 5 3 
R2 C7 2 2 3 
R1 C8 5 5 3 
R1 C9 4 5 2 
R2 C10 3 1 2 
R1 C11 4 4 5 
R2 C12 2 3 5 
R1 C13 4 4 3 
R1 C14 4 4 2 

 

Table 6. The multi-instance data transformed from the example score dataset 
 Pid Cid Food score Service score Décor score 

Multi-instance data for R1 R1 C1 3 4 3 
 R1 C2 5 5 4 
 R1 C4 5 4 3 
 R1 C5 5 5 4 
 R1 C6 5 5 3 
 R1 C8 5 5 3 
 R1 C9 4 5 2 
 R1 C11 4 4 5 
 R1 C13 4 4 3 
 R1 C14 4 4 2 

Multi-instance data for R2 R2 C3 3 2 4 
 R2 C7 2 2 3 
 R2 C10 3 1 2 
 R2 C12 2 3 5 
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DEFINITION 7. (Dominance relation on multi-instance data). Let U and V be two 1-dimensional 
objects: � = 〈�1,���1��, ⋯ , �	, ���	��, … �
, ���
��〉  and 	
 = 〈�1,���1��, ⋯ , �	, ���	��, … �
, ���
��〉 . Scores 
range from 1 to n (which is the highest score). Let p(xi) denotes the probability of score being xi, 
����� 	≥ 	0, and ∑ p�x�� = 1�

��� . Therefore, ∑ ���	� = 1	�
�		
��� ∑ ���	� = 1	

��� . Let Pr[U > V] denote the 
probability that the object U dominates the object V, and ��[� > 
] = ∑ (���	� × ∑ �����

�
�
��� )	

��� . 

In the skyline query, a point Pi dominates another point Pj, if and only if Pi is as good or better than Pj 
in all dimensions and better in at least one dimension. We apply the same concept to the object data 
containing probability values. We define that the probability values of the higher score can dominate 
the probability values of the lower score. We explain the dominance relation by using the example 
below. Let U and V be two 1-dimensional objects with possible scores from 1 to 5: U = <(1,U1), (2,U2), 
(3,U3), (4,U4), (5,U5)> and V = <(1,V1), (2,V2), (3,V3), (4,V4), (5,V5)>. The probability value of score 5 of an 
object (that is, U5 and V5) dominates the probability values of scores 4, 3, 2 and 1 of another object. As a result, 
the probability value of U dominating V is U5×(V4+V3+V2+V1)+U4×(V3+V2+V1)+U3×(V2+V1)+U2×V1, and 
this probability is denoted by Pr[U > V]. Definition 7 is based on this concept. This is consistent with 
the skyline query on general tuples. 

DEFINITION 8. (Better relation). If U and V are two d-dimensional objects, for every dimension i (1 ≤ i 
≤ d), if Pr[Ui > Vi] ≥ Pr[Vi > Ui], there exists a dimension j (1 ≤ j ≤ d) such that Pr[Uj > Vj] > Pr[Vj > Uj]. 
Then, U is better than V in the d-dimensional space. 

If an object is better than any other object, this object is a skyline object. Better relation is transitive. If 
U is better than V and V is better than W, U is also better than W.  

We explain how an object dominates another using the example in Table 6. In Table 6, R1 = <(1,0), 
(2,0), (3,0.1), (4,0.4), (5,0.5), (1,0), (2,0), (3,0), (4,0.5), (5,0.5), (1,0), (2,0.2), (3,0.5), (4,0.2), (5,0.1)>. 
Similarly, R2 = <(1,0), (2,0.5), (3,0.5), (4,0), (5,0), (1,0.25), (2,0.5), (3,0.25), (4,0), (5,0), (1,0), (2,0.25), 
(3,0.25), (4,0.25), (5,0.25)>. For food and service dimensions, Pr[R1 > R2] > Pr[R2 > R1], but for décor 
dimension, Pr[R1 > R2] < Pr[R2 > R1]. As a result, R1 cannot be dominated R2 in décor dimension. 

DEFINITION 9. (Skyline) The skyline of objects set S, denoted as SKY(S), is a subset of objects that are 
better than another or cannot be dominated by another in at least one dimension. 

 

2.3 Algorithms 
 

 
Fig. 1. The algorithm for dominance relation comparison. 

Algorithm: Dominate(U, V) 

Input: Objects U and V 

Output: The dominating object 

Steps: 

1. Calculate i as U
n
*(V

n-1+V
n-2+…+V1)+U

n-1*(V
n-2+…+V1)+…+U2*V1 ; 

2. Calculate j as V
n
*(U

n-1+U
n-2+…+U1)+V

n-1*(U
n-2+…+U1)+…+V2*U1; 

3. IF i > j THEN 

4.    RETURN 1 

5. ELSE IF i < j THEN 

6.    RETURN 0 

7. ELSE  

8.    RETURN -1 
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Fig. 1 presents the algorithm to do dominance relation comparison in one dimension. It is defined by 
Definition 7 in the previous subsection. For the multi-instance data, the skyline query makes 2 
comparisons between two 1-dimensional objects. If we have m d-dimensional objects, there are 
� × (� − 1) × � 2⁄  comparisons for the dominance relation. For efficiency, we have to reduce the 
calculation cost. We first do presorting according to the values calculated by one of the three functions 
described in Table 7. Next, we do filtering. Then, if an object satisfies the conditions described by 
Theorem 1, further calculation on it can be skipped. 

 
Table 7. A summary table for three functions 

Function Definition Description 

First 
 
 
 
 

It is the probability of the highest score, 
or it is p(xn), where n is the highest 
score. 
 
 

Intuitively, if an object has a larger probability value 
for having the highest score, it possibly dominates 
another one. For example, if a restaurant is assigned 
the highest score by most of the users, it is the most 
recommended one. 

Second 
 
 

It is the expected score and calculated 
by ∑ �� × ����	.

�

���  
 

The expected value is a weighted average of all scores. 
If the expected value of an object is larger, the chance 
that this object dominates another object is higher. 

Third 
 
 
 
 

It is the net probability value between 
the two groups, and it is calculated by 
∑ ����	− ∑ ����	

�/�

���

�

��(���)/� . 
 
 

We divide the probability values of each object into 
two groups: one is the sum of probabilities of the 
group with higher scores, and the other is the sum of 
probabilities of the group with lower scores. This 
extends from the first function. 

 

We have objects with different dimensions for using one of the three functions and measure 
execution time for these objects by using Theorem 1 to reduce the number of calculations for the 
dominance relation. For the sorted objects by using the first function, the first object could be a skyline 
object because it has a larger the probability of the highest score to dominate another one. The expected 
value given by the second function is calculated by multiplying each of the probability values by the 
corresponding scores and summing all the values. We presort data by using one of three functions for 
reducing its computational cost. 

 
THEOREM 1. Let A and B be two 1-dimensional objects and n be the highest score: 

� = 〈�1,���1��, ⋯ , �	,���	��, … �
, ���
��〉 = 〈�1,���, ⋯ , �	,���, … �
,�	�〉  and 	� = 〈�1,�
�1��, ⋯ , �	, �
�	��,

  …�,���=1,�1,⋯,�,��, …�,��. (i) For n=2, if A2 > B2, then A is better than B. (ii) For n>2, if An > 

(1/(2−B
n
)), then A is better than B. 

Proof: (i) For each dimension of an object, the sum of these probability values is 1. For two 1-

dimensional objects A=<(1, A1), (2, A2)> and B=<(1, B1), (2, B2)>, where 1 and 2 are scores, A1+A2 =1 

and B1+B2 =1. Pr[A > B] − Pr[B > A] > 0 if A is better than B. Since A2=1−A1 and B2=1−B1. Pr[A > B] = 

A2×B1 = A2× (1−B2) = A2−A2×B2 and Pr[B > A] = B2×A1 = B2×(1−A2) = B2−B2×A2. So, (A2−A2×B2) − 

(B2−B2×A2) > 0, A2 − A2×B2 − B2 +B2×A2 > 0, and A2 − B2 > 0. So, if A2 > B2 then A is better than B. (ii) A 
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and B are two 1-dimensional objects with possible scores from 1 to n, so ∑ �� = 1
�

���  and ∑ �� = 1
�

��� . 

A is better than B, if Pr[A > B] > Pr[B > A] is satisfied. In the worst case, A is equal to <(1, (1−An)), 

(2,0),…, (n−1,0), (n, An) > and B is equal to <(1, 0), (2, 0),…, ((n-2), 0), ((n−1), (1−Bn)), (n, Bn)>. That is, 

the probability value of the highest score n of A is large enough to dominate B. If A is better than B, 

Pr[A > B] − Pr[B > A] > 0, [An×(1− Bn)] − [Bn×(1− An)+(1− Bn)×(1− An)] > 0, An − An×Bn − (1−An) > 0, 

2×An − An×Bn −1 > 0, An (2− Bn) > 1, and An >(1/(2−Bn)). If An > (1/(2 − Bn)) then A is better than B. 

Fig. 2 presents the algorithm to do skyline query processing. We first sort the input data by using one 
of the three functions defined in Table 7.  

 

 

Fig. 2. The algorithm for skyline query processing and dominance relation comparison. 

Algorithm: RetrieveSkyline(S, D, n) 

Input: A set of objects S, the number of dimensions D, the highest score n (while the lowest is 1) 

Output: The skyline objects in S 

Steps: 

1. SKY ← Ø, NOSKY ← Ø 

2. Sort S according to the values returned by a function defined in Table 7 

3. FOR EACH object A ∈ S DO 

4.  IF A ∈ NOSKY THEN NEXT 

5.  FOR EACH object B ∈ S and B≠A DO 

6.   IF B ∈ NOSKY THEN NEXT 

7.   WHILE D > 0 DO 

8.    IF A
n  > 1/(2-B

n
) THEN 

9.     SKY ← SKY∪{A} 

10.     NOSKY ← NOSKY∪{B} 

11.     NEXT 

12.    ELSE 

13.     x ← Dominate(A,B) 

14.     IF x = 1 THEN     

15.      SKY ← SKY-{B} 

16.      NOSKY ← NOSKY∪{B} 

17.      SKY ← SKY∪{A} 

18.     ELSE IF x = 0 THEN 

19.      SKY ← SKY-{A} 

20.      NOSKY ← NOSKY∪{A} 

21.      SKY ← SKY∪{B} 

22.     ELSE 

23.      SKY ← SKY∪{A,B} 

24.     D ← D-1 

25.   END WHILE 

26.  END FOR EACH  

27. END FOR EACH 

28. RETURN SKY
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3. Results and Discussion 

The goal of experiments is to show that our methods can efficiently process the skyline query on 
multi-instance data. We use the C programming language to implement our algorithms and conduct 
experiments on a general PC.  

To verify the efficiency, we use synthetic datasets from random and Gaussian (or normal) 
distributions [27,28] and real datasets. For a synthetic dataset, the dimensionality is 1, 5, or 10. For a 
synthetic dataset from random distribution, the size (or the number of objects) is 5,000 (5K), 50,000 
(50K), or 500,000 (500K). For a synthetic dataset from Gaussian distribution, the highest score of every 
dimension is 5 or 10. The real datasets include a review dataset and a dataset from Facebook. 

We first generate 10 groups of objects by using random distribution. The size of each group is 
100,000 (10K) with 1, 5, and 10 dimensions. Not all dimensions are independent. Therefore, we 
additionally generate 10 other groups by using Gaussian distribution [28,29]. To have four distribution 
patterns, we use the means 1.5, 2.5, 3.5 and 4.5 with the standard deviation 0.5. The generated values are 
rounded to an integer between 1 and 5 and they are scores assigned to an object. The dimension being 
10 (D=10) means that users assign scores to an object in each of the 10 dimensions. So, an object has 50 
probability values that are transformed from the data. The dominance values of two objects are 
calculated by converting the corresponding populations of the scores for each dimension into 
probabilities. With the naïve method, calculating three 1-dimensional objects requires six runs of 
dominance relation computation. When the number of dimensions increases, the chance of one object 
dominating another object can possibly be low, and the skyline query may return a large number of 
objects. The complexity of the processing increases when the number of dimensions increases. 
Nevertheless, as the number of dimensions increases, according to Theorem 1, we can decrease the 
number of comparisons of dominance relation for some dimensions. 

In experiments, we compare the running time of using the naïve method and that of using the 
presorting method with each of the three functions defined in Table 7. We also compare the number of 
dominance relation comparisons. 

 
3.1 Synthetic Datasets 
 
3.1.1 Datasets from random distribution 
 

When D is 1, 5, or 10, using one of the three functions is faster than using the naïve method, and on 
average there is a reduction of 10%–20% in the running time, as shown in Fig. 3. For D is 5 or 10, the 
second function uses more time than do the other two functions. In Fig. 3, for the number of 
dominance relation comparisons, using the first function is similar to using the third function. 

We discuss the datasets of different sizes with 5-dimensional random distribution. We compare three 
different sizes: 5,000 (5K), 50,000 (50K), and 500,000 (500K). In the running time, our methods are 
about 50 times faster on the dataset whose size is 5K than on the dataset whose size is 50K, as shown in 
Fig. 4. Our methods are about twice faster one the dataset whose size is 50K than on the dataset whose 
size is 500K. Due to a large amount of data, the two datasets whose sizes are 50K and 500K need 
additional I/O processing time. The running time of each of the two datasets is significantly longer than 
the dataset whose size is 5K. When it runs on the dataset whose size is 500K and is with the first 
function defined in Table 7, our methods use fewer calculations for dominance comparisons. 
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 (a) (b)  

Fig. 3. The running time (a) and the number of dominance relation comparisons (b) for datasets from 
random distribution. 

 

Both the execution time and the number of comparisons can be reduced when our methods are used 
for situations where random distribution or Gaussian distribution is used to generate attribute values. 
Obviously, if an object is assigned poor scores in any of the dimensions, it would be eliminated 
according to Theorem 1. This means that no more calculation is required for dominance relation 
comparison and then the execution time is saved. For the situations where Gaussian distribution is used 
to generate the attribute values, the execution time decreases about 40% for D being 10, and the number 
of comparisons decreases 20%–30%. 
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 (a) (b)  
Fig. 4. The performance comparison between datasets from random distribution of different sizes. (a) 
The running time. (b) The number of dominance relation comparisons. 

 
3.1.2 Datasets from Gaussian distribution 
 

Gaussian distribution is a very common continuous probability distribution [26]. It is important in 
statistics and often used in sciences [26,27]. When D is 1, 5, or 10, using the three functions to presort 
the data is faster than using the naïve method, and on average there is a reduction of 5%–16% in the 
running time. When D is 5 or 10, using the first function uses fewer calculations than do the other two 
functions, as shown in Fig. 5. This indicates that the first function works well in high dimension. When 
the dimensionality is 1, our methods significantly reduce the number of comparisons. When D is 5 or 
10, using the second function uses larger numbers of comparisons. 
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 (a) (b)  
Fig. 5. The running time (a) and the number of dominance relation comparisons (b) for datasets from 
Gaussian distribution 

 

Both the execution time and the number of comparisons can be reduced when our methods are used for 
situations where random distribution or Gaussian distribution is used to generate attribute values. The 
reason is that the distributions of attribute values are dependent. For example, if an object is assigned poor 
scores in any of the dimensions, it would be eliminated according to Theorem 1. This means that no more 
calculation is required for dominance relation comparisons and then the execution time is less. For the 
situations where Gaussian distribution is used to generate the attribute values, the execution time 
decreases about 40% for D being 10, and the number of comparisons decreases 20%–30%. 

We generate another 10-dimensional dataset with Gaussian distribution and the size of this dataset is 
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100,000 (100K). The scores of every dimension are from 1 to 10 in this dataset. It denotes that users 
assign scores from 1 to 10 to an object. It is different from the generated datasets described earlier. To 
have 9 distribution patterns, we use the means 1.5, 2.5, …, 9.5, and we use the standard deviation 0.5. 
When the score range increases from 5 to 10, the number of the probability values is doubled for every 
object. Compared to another dataset with the same dimension and distribution but different score 
ranges, this dataset increases the running time by about 40%, as shown in Fig. 6(a). When the score 
range increases, the growth rate of the running time is less than the growth rate of score range by using 
our methods. Fig. 6(b) shows that there is no significant difference between the datasets in the number 
of the dominance relation comparisons. 

 

       

 (a) (b)  
Fig. 6. The performance comparison between 10-dimensional datasets from Gaussian distribution with 
different score ranges. (a) The running time. (b) The number of dominance relation comparisons. 

 
Fig. 6 shows that the score range influences the performance of skyline query processing. As shown in 

Fig. 6, this dataset is as twice large in the number of probability values as the other, but its execution 
time increases by about 40%. In addition, a larger score range for every object increases the overall 
processing time, especially I/O processing time. When the number of probability values has a 100% 
increase, the overall processing time of any of our methods has a 40% increase, which means that, 
practically speaking, the runtime complexity of any of our methods is better than linear. 

 

3.2 Real Datasets 
 
3.2.1 The review dataset 
 

We include a review dataset in our experiments. It is the restaurant and consumer (RC) dataset for 
recommender systems, and it is originally crawled from TripAdvisor (www.tripadvisor.com) for a 
period of one month and used in [29,30]. In this dataset, an object is a restaurant and a review is an 
instance; reviewers are asked to provide ratings on 3 dimensions in each review, namely overall, food 
and service rating, and each ranges from 0 to 2. We first perform pre-processing on the original dataset: 
(1) remove the reviews with any missing rating; (2) transform the rating data; (3) duplicate data and 
generate a much larger dataset for the performance test. After the pre-processing, the number of objects 
is 100,100 and the number of reviews is 1,789,480. Below are simple statistics for ratings: Overall is 
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1.20±0.04, food is 1.22±0.46, and service is 1.09±0.05. Further, the overall rating is dependent on the 
food and service ratings in the RC dataset. 

We compare the RC dataset, the synthetic datasets from random distribution and Gaussian 
distribution. The results are in Fig. 7. Because the RC dataset contains only one group, we use the 
average of the two generated datasets. We found that the RC dataset is close to the dataset of Gaussian 
distribution in the running time and the number of comparisons. The RC dataset with the first function 
works well. Using one of the three presorting functions with Theorem 1 is better than using the naïve 
method for synthetic datasets and the RC dataset, as shown in Fig. 7. 

 

 

 (a) (b)  
Fig. 7. The performance comparison between the RC dataset and two synthetic datasets. (a) The running 
time. (b) The number of dominance relation comparisons. 

 

3.2.2 The dataset from Facebook 
 

We use a real dataset collected from a social media platform, Facebook (FB), which is one of the most 
popular websites. The data is collected from the 20 selected fan pages through Facebook Graph API. 
The 20 selected fan pages are against the Cross-Strait Service Trade Agreement (CSSTA) on Facebook 
in Taiwan. The data contains the posts of the selected fan pages between March 18 and April 11, 2014. 
This period is known as the sunflower student movement. Every post contains two attributes, namely 
the number of shares and the number of comments. The task is to retrieve the posts that dominate 
others (or the skyline posts) in shares and comments. 

The FB dataset includes 2,533 posts, 256,027 shares, 176,942 comments, and 84,781 users who react 
to these posts during this movement on Facebook. Reactions include sharing posts and commenting on 
posts. The share rating ranges from 1 to 5, and so does the comment rating. When a user shares a post 
within the first hour after the post is created, we assign 5, the highest score, to this user-post pair for the 
sharing rating. When a user shares a post between the first hour and the second hour, the share rating is 
4. When a user shares a post over the fourth hour, the share rating is 1. We illustrate the method with 
an example given in Table 8. Pid and Uid are post identifier and user identifier, respectively. The post P1 is 
denoted by <(1,0.2), (2,0.2), (3,0.1), (4,0.3), (5,0.2)>. Similarity, we use the same method to generate 
comment ratings. The definitions of share and comment ratings might seem arbitrary, but they are not 
unreasonable. Our goal is simply to have a dataset for the performance test. 
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Table 8. A post is shared by users 
Pid PostCreatedTime ShareCreatedTime Uid Sharing rating 
P1 2014-03-20 09:40 2014-03-20 10:03 U1 5 
P1 2014-03-20 09:40 2014-03-20 10:31 U2 5 
P1 2014-03-20 09:40 2014-03-20 10:45 U3 4 
P1 2014-03-20 09:40 2014-03-20 11:10 U4 4 
P1 2014-03-20 09:40 2014-03-20 11:35 U5 4 
P1 2014-03-20 09:40 2014-03-20 12:20 U6 3 
P1 2014-03-20 09:40 2014-03-20 12:50 U7 2 
P1 2014-03-20 09:40 2014-03-20 13:30 U8 2 
P1 2014-03-20 09:40 2014-03-20 18:40 U9 1 
P1 2014-03-20 09:40 2014-03-21 10:00 U10 1 

 
Next, we perform data transformation. Every object contains two dimensions, namely share rating 

and comment rating. After transformation, simple statistics are given in Table 9. 
 

Table 9. Statistics for share and comment ratings in the FB dataset 

 Number Mean Median Mode Standard 
deviation 

Standard 
error 

Share rating 256,027 2.45 1 1 1.69 0.004 

Comment rating 176,942 2.86 3 1 1.75 0.005 
 

 

 (a) (b)  
Fig. 8. The running time (a) and the number of dominance relation comparisons (b) for the FB dataset. 

 

  

 (a) (b)  
Fig. 9. The frequency distributions of share rating (a) and comment rating (b) in the FB dataset. 
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Fig. 8(a) and (b) show the running time and the number of the dominance relation computation, 
respectively. This indicates that the second function works well in the FB dataset. This result is different 
from the results from the experiments on the above-mentioned datasets. The frequency distributions of 
share rating and comment rating are shown in Fig. 9(a) and (b), respectively. The frequency 
distributions of the two dimensions are different from the random and Gaussian distributions. From 
Fig. 9, the comment rating being 5 is the maximum number, and this presents that most users comment 
on posts within the first hour after the post is created. However, the share rating being 5 is less 
significant. Even when the distributions of values (ratings) of dimensions are skew, our methods are still 
better than the naïve method. In the number of dominance relation comparisons, our methods are 
about 30-40% lower than the naïve method (and hence our methods are faster). 

 

3.3 Comparison with Other Skyline Query Processing Algorithms 
 

A typical example of a skyline query is on the data objects in a multi-dimensional space. For example, 
an object is a product or service. Existing algorithms assume that an object has a value in a dimension. 
They handle single-instance data. In reality, however, an object can have many values in a dimension, 
since a product or service can have many review scores in a dimension, such as satisfaction. Therefore, 
we propose to directly handle multi-instance data. Our methods and existing algorithms are not totally 
comparable, so we first perform data transformation and then apply popular traditional algorithms to 
the transformed data. To process a skyline query, BNL algorithm compares every object with every 
other object in the dataset. In [4], D&C algorithm for skyline query processing is proposed. Our 
methods are compared with BNL and D&C algorithms. We use the synthetic datasets with 3-
dimensional random distribution to examine the two algorithms and our methods. The data which a 
typical skyline query runs on is single-instance data. Therefore, we transform the multi-instance data to 
single-instance data and then we use two methods to process the skyline query. One method is to use all 
reviewers’ scores as objects; that is, we treat instances as objects. With this transformation method, the 
result is the skyline over reviewer’s scores, and the result is less meaningful. The other method to 
transform the data is to use average scores of objects, and this is common on many review websites today.  

 

 

 (a) (b)  
Fig. 10. Our methods compared with BNL algorithm (a) and D&C algorithm (b). 
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We generate 10 groups of objects by using random distribution. The size of each group is 100,000 
(10K) with 3 dimensions. Fig. 10(a) shows the running time of our methods and BNL algorithm applied 
to the data transformed by the two aforementioned methods (BNL1 and BNL2). Time spent on data 
transformation is excluded. BNL1 is to use all reviewers’ scores to transform the data and then use BNL. It 
processes the skyline query on all scores directly. The skyline tuples are instances (scores), not objects 
(products or services). BNL1 cannot recommend objects. BNL2uses average scores of objects to transform 
the data and then uses BNL. The skyline tuples are objects. We compute average scores of objects first 
and then process the skyline query for objects. Prior to the skyline query, BNL2 transforms the data. 
There is no surprise that BNL2 is faster than BNL1. BNL2 and our methods can recommend objects 
directly. Nevertheless, using averages will cause information lost and other problems, such as that 
averages are affected by extreme values. BNL1 is faster than the naïve method in 8 groups. Our methods 
with three presorting functions proposed in this paper are faster than BNL1 in all groups, and they are 
faster than BNL2 in 7 groups. Fig. 10(b) shows the running time of our methods and D&C algorithm 
with the two aforementioned data transformation methods (D&C1 and D&C2). Similarity, D&C1 uses 
scores (that is, it treats instances as objects), and D&C2 uses average scores of objects. D&C1 is faster 
than the naïve method in all groups. D&C1 cannot recommend objects directly. Our methods are faster 
than D&C1 in all groups. Although D&C2 is faster than our methods, our methods can evaluate the 
contribution of every instance (and therefore can help find important instances, such as interesting 
reviews), and they can handle extreme values. The average will be affected by extreme values and it will 
have a bias. Nevertheless, the results show the advantage of D&C algorithm in running time.  Please 
note that we do not include time spent on data transformation. 

BNL and D&C algorithms use the Bitmap and the Index techniques. Our methods use presorting 
functions to speed up query processing, and they use Theorem 1 to reduce the number of calculations 
of the dominance relation. The first presorting function can finish the skyline computation earlier. 
Therefore, it performs well in most datasets. 

 
 

4. Conclusions and Future Work 

A skyline query is to retrieve dominating tuples from a set of tuples. A skyline tuple is one that is in 
the result of a skyline query or is part of the answer to a skyline query. Skyline query processing 
becomes an important research problem because it can be used to identify interesting tuples efficiently. 
Skyline queries are related to the maximum vector problem and multi-criteria decision making. 
Therefore, efficiently processing skyline queries is important and valuable. Today, many websites are 
offering users experience-sharing services and many users assign scores to a product or a service, called 
an object. For an object, one instance is a user’s score and then these scores become many instances. 
Such data is called multi-instance data. Traditional skyline queries are defined upon single-instance 
data. However, our study focuses on efficiently processing skyline queries on multi-instance data. We 
define the dominance calculation and propose methods to reduce its computational cost. We propose 
three functions to presort the data. In experiments, we compare the running time of using the naïve 
method and each of the three functions. Overall, using one of the three presorting functions with 
Theorem 1 is better than using the naïve method for synthetic and real datasets. When the score range 
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or dimension increases, the growth rate of the running time is less than the growth rate of score range 
or dimension by using our methods. The first function has the best performance on the synthetic 
datasets from the two distributions. For the real datasets, the first function works well on the RC 
dataset, which is the restaurant and consumer dataset, and the second function works well on the FB 
dataset, which is regarding messages on a popular social media website. 

As mentioned earlier, part of future work could be to parallelize our methods. Additionally, in the 
future, we plan to use our methods in a review website for e-commerce. This can lead to better user 
experience because our methods recommend products to users by using individual review scores rather 
than an overall review score. We propose methods to recommend interesting objects. Nowadays, many 
review websites only use the averages of review scores of objects. Using an average would possibly cause 
information lost and other problems. By using our methods, the review websites can give users not only 
the average of review scores of objects but also interesting individual reviews. In addition, we plan to 
design more functions to presort the data. 
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