• Title/Summary/Keyword: Multiple Simulation

Search Result 3,654, Processing Time 0.029 seconds

Modified Consensus Based Auction Algorithm for Task Allocation of Multiple Unmanned Aerial Vehicle (다중 무인기의 임무 할당을 위한 수정된 합의 기반 경매 알고리즘)

  • Kim, Min-Geol;Shin, Suk-Hoon;Lee, Eun-Bog;Chi, Sung-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.197-202
    • /
    • 2014
  • In order to operate multiple UAVs for multiple tasks efficiently, we need a task allocation algorithm with minimum cost, i.e.,total moving distance required to accomplish the whole mission. In this paper, we have proposed the MCBAA (Modified Consensus Based Auction Algorithm) which can be suitably applied to the operation of multiple UAVs. The key idea of proposed algorithm is to minimize sum of distance from current location of agents to location of tasks based on the conventional CBAA. Several simulation test performed on three UAV agents with multiple tasks demonstrates the overall efficiency both in time and total distance.

Design and Implementation of Real-Time Parallel Engine for Discrete Event Wargame Simulation (이산사건 워게임 시뮬레이션을 위한 실시간 병렬 엔진의 설계 및 구현)

  • Kim, Jin-Soo;Kim, Dae-Seog;Kim, Jung-Guk;Ryu, Keun-Ho
    • The KIPS Transactions:PartA
    • /
    • v.10A no.2
    • /
    • pp.111-122
    • /
    • 2003
  • Military wargame simulation models must support the HLA in order to facilitate interoperability with other simulations, and using parallel simulation engines offer efficiency in reducing system overhead generated by propelling interoperability. However, legacy military simulation model engines process events using sequential event-driven method. This is due to problems generated by parallel processing such as synchronous reference to global data domains. Additionally. using legacy simulation platforms result in insufficient utilization of multiple CPUs even if a multiple CPU system is under use. Therefore, in this paper, we propose conversing the simulation engine to an object model-based parallel simulation engine to ensure military wargame model's improved system processing capability, synchronous reference to global data domains, external simulation time processing, and the sequence of parallel-processed events during a crash recovery. The converted parallel simulation engine is designed and implemented to enable parallel execution on a multiple CPU system (SMP).

Simulation Study of Discrete Event Systems using Fast Approximation Method of Single Run and Optimization Method of Multiple Run (단일 실행의 빠른 근사해 기법과 반복 실행의 최적화 기법을 이용한 이산형 시스템의 시뮬레이션 연구)

  • Park, Kyoung Jong;Lee, Young Hae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • This paper deals with a discrete simulation optimization method for designing a complex probabilistic discrete event simulation. The developed algorithm uses the configuration algorithm that can change decision variables and the stopping algorithm that can end simulation in order to satisfy the given objective value during single run. It tries to estimate an auto-regressive model for evaluating correctly the objective function obtained by a small amount of output data. We apply the proposed algorithm to M/M/s model, (s, S) inventory model, and known-function problem. The proposed algorithm can't always guarantee the optimal solution but the method gives an approximate feasible solution in a relatively short time period. We, therefore, show the proposed algorithm can be used as an initial feasible solution of existing optimization methods that need multiple simulation run to search an optimal solution.

A Wide-Window Superscalar Microprocessor Profiling Performance Model Using Multiple Branch Prediction (대형 윈도우에서 다중 분기 예측법을 이용하는 수퍼스칼라 프로세서의 프로화일링 성능 모델)

  • Lee, Jong-Bok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1443-1449
    • /
    • 2009
  • This paper presents a profiling model of a wide-window superscalar microprocessor using multiple branch prediction. The key idea is to apply statistical profiling technique to the superscalar microprocessor with a wide instruction window and a multiple branch predictor. The statistical profiling data are used to obtain a synthetical instruction trace, and the consecutive multiple branch prediction rates are utilized for running trace-driven simulation on the synthesized instruction trace. We describe our design and evaluate it with the SPEC 2000 integer benchmarks. Our performance model can achieve accuracy of 8.5 % on the average.

Geostatistical Simulation of Compositional Data Using Multiple Data Transformations (다중 자료 변환을 이용한 구성 자료의 지구통계학적 시뮬레이션)

  • Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.69-87
    • /
    • 2014
  • This paper suggests a conditional simulation framework based on multiple data transformations for geostatistical simulation of compositional data. First, log-ratio transformation is applied to original compositional data in order to apply conventional statistical methodologies. As for the next transformations that follow, minimum/maximum autocorrelation factors (MAF) and indicator transformations are sequentially applied. MAF transformation is applied to generate independent new variables and as a result, an independent simulation of individual variables can be applied. Indicator transformation is also applied to non-parametric conditional cumulative distribution function modeling of variables that do not follow multi-Gaussian random function models. Finally, inverse transformations are applied in the reverse order of those transformations that are applied. A case study with surface sediment compositions in tidal flats is carried out to illustrate the applicability of the presented simulation framework. All simulation results satisfied the constraints of compositional data and reproduced well the statistical characteristics of the sample data. Through surface sediment classification based on multiple simulation results of compositions, the probabilistic evaluation of classification results was possible, an evaluation unavailable in a conventional kriging approach. Therefore, it is expected that the presented simulation framework can be effectively applied to geostatistical simulation of various compositional data.

Development of Scheduler Based on Simulation for Phone Camera Lens Module Manufacturing System (폰카메라 렌즈모듈 제조시스템을 위한 시뮬레이션 기반의 스케줄러 개발)

  • Kim, Jae Hoon;Lee, Seung Woo;Lee, Dae Ryoung;Park, Chul Soon;Song, Jun Yeob;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.131-142
    • /
    • 2014
  • Phone camera lens module is assembled with a barrel, multiple lenses, multiple spacers and a shield. The major processes of manufacturing system are injection molding, coating and assembly processes, and each process has multiple machines. In this paper, we introduce a scheduler based on simulation model which can be used for frequent rescheduling problem caused by urgent orders, breaking down of molds and failures of machines. The scheduling algorithm uses heuristic Backward-Forward method, and the objective is to minimize the number of tardy orders.

Solute Transport Modeling using Streamline Simulation in a Heterogeneous Aquifer with Multiple Contaminant Sources (불균질 대수층에서 유선 시뮬레이션을 이용한 다수 오염원의 용질 이동 모사)

  • Jung Seung-Pil;Choe Jong-Geun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.24-31
    • /
    • 2005
  • This study presents a contaminant transport model suitable for a 2-dimensional heterogeneous aquifer with multiple contaminant sources. It uses a streamline simulation, which transforms a multi-dimensional problem into multiple 1dimensional problems. It runs flow simulation, streamline tracking, and calculation of contaminant concentrations by turns. The model is verificated with a Visual MODFLOW by comparing contaminant concentration distributions and breakthrough curves at an observation well. Due to its fast simulation, it can be applied to time consuming simulations such as in a fine-grided aquifer, an inverse modeling and other applications.

The Processor Performance Model Using Statistical Simulation (통계적 모의실험을 이용하는 프로세서의 성능 모델)

  • Lee Jong-Bok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.5
    • /
    • pp.297-305
    • /
    • 2006
  • Trace-driven simulation is widely used for measuring the performance of a microprocessor in its initial design phase. However, since it requires much time and disk space, the statistical simulation has been studied as an alternative method. In this paper, statistical simulations are performed for a high performance superscalar microprocessor with a perceptron-based multiple branch predictor. For the verification, various hardware configurations are simulated using SPEC2000 benchmarks programs as input. As a result, we show that the statistical simulation is quite accurate and time saving for the evaluation of microprocessor architectures with multiple branch prediction.

Localization Method for Multiple Robots Based on Bayesian Inference in Cognitive Radio Networks (인지 무선 네트워크에서의 베이지안 추론 기반 다중로봇 위치 추정 기법 연구)

  • Kim, Donggu;Park, Joongoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.104-109
    • /
    • 2016
  • In this paper, a localization method for multiple robots based on Bayesian inference is proposed when multiple robots adopting multi-RAT (Radio Access Technology) communications exist in cognitive radio networks. Multiple robots are separately defined by primary and secondary users as in conventional mobile communications system. In addition, the heterogeneous spectrum environment is considered in this paper. To improve the performance of localization for multiple robots, a realistic multiple primary user distribution is explained by using the probabilistic graphical model, and then we introduce the Gibbs sampler strategy based on Bayesian inference. In addition, the secondary user selection minimizing the value of GDOP (Geometric Dilution of Precision) is also proposed in order to overcome the limitations of localization accuracy with Gibbs sampling. Via the simulation results, we can show that the proposed localization method based on GDOP enhances the accuracy of localization for multiple robots. Furthermore, it can also be verified from the simulation results that localization performance is significantly improved with increasing number of observation samples when the GDOP is considered.

The Modeling and Simulation for Pseudospectral Time-Domain Method Synthetic Environment Underwater Acoustics Channel applied to Underwater Environment Noise Model (수중 환경 소음 모델이 적용된 의사 스펙트럼 시간영역 법 합성환경 수중음향채널 모델링 및 시뮬레이션)

  • Kim, Jang-Eun;Kim, Dong-Gil;Han, Dong-Seog
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.15-28
    • /
    • 2016
  • It is necessary to analyze underwater acoustics channel(UAC) modeling and simulation for underwater weapon system development and acquisition. In order to analyze UAC, there are underwater acoustics propagation numerical analysis models(Ray theory, Parabolic equation, Normal-mode, Wavenumber integration). However, If these models are used for multiple frequency signal analysis, they are inaccurate to calculate result of analysis effectiveness and restricted for signal processing and analysis. In this paper, to overcome this problem, we propose simple/multiple frequency signal analysis model of the Pseudospectral Time-Domain Method synthetic environment UAC applied to underwater environment noise model as like as realistic underwater environment. In order to confirm the validation of the model, we performed the 9 scenarios simulation(4 scenarios of single frequency signal, 4 scenarios of multiple frequency signal, 1 scenario of single/multiple frequency signal like submarine radiated noise) for validation and confirmed the validation of this model through the simulation model.